A Sprayed Graphene Pattern-Based Flexible Strain Sensor with High Sensitivity and Fast Response

被引:33
作者
Xu, Wei [1 ,2 ]
Yang, Tingting [1 ,2 ]
Qin, Feng [1 ,2 ]
Gong, Dongdong [1 ,2 ]
Du, Yijia [1 ,2 ]
Dai, Gang [1 ,2 ]
机构
[1] China Acad Engn Phys, Inst Elect Engn, Mianyang 621900, Peoples R China
[2] China Acad Engn Phys, Microsyst & Terahertz Res Ctr, Chengdu 610200, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
graphene; flexible strain sensor; high sensitivity; fast response; curved substrate; PRESSURE SENSORS; HIGH-PERFORMANCE; TRANSISTORS;
D O I
10.3390/s19051077
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Flexible strain sensors have a wide range of applications in biomedical science, aerospace industry, portable devices, precise manufacturing, etc. However, the manufacturing processes of most flexible strain sensors previously reported have usually required high manufacturing costs and harsh experimental conditions. Besides, research interests are often focused on improving a single attribute parameter while ignoring others. This work aims to propose a simple method of manufacturing flexible graphene-based strain sensors with high sensitivity and fast response. Firstly, oxygen plasma treats the substrate to improve the interfacial interaction between graphene and the substrate, thereby improving device performance. The graphene solution is then sprayed using a soft PET mask to define a pattern for making the sensitive layer. This flexible strain sensor exhibits high sensitivity (gauge factor 100 at 1% strain), fast response (response time: 400-700 s), good stability (1000 cycles), and low overshoot (<5%) as well. Those processes used are compatible with a variety of complexly curved substrates and is expected to broaden the application of flexible strain sensors.
引用
收藏
页数:11
相关论文
共 39 条
[1]   Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes-Ecoflex nanocomposites [J].
Amjadi, Morteza ;
Yoon, Yong Jin ;
Park, Inkyu .
NANOTECHNOLOGY, 2015, 26 (37)
[2]   Highly Stretchable and Sensitive Strain Sensor Based on Silver Nanowire-Elastomer Nanocomposite [J].
Amjadi, Morteza ;
Pichitpajongkit, Aekachan ;
Lee, Sangjun ;
Ryu, Seunghwa ;
Park, Inkyu .
ACS NANO, 2014, 8 (05) :5154-5163
[3]   Review: Semiconductor Piezoresistance for Microsystems [J].
Barlian, A. Alvin ;
Park, Woo-Tae ;
Mallon, Joseph R., Jr. ;
Rastegar, Ali J. ;
Pruitt, Beth L. .
PROCEEDINGS OF THE IEEE, 2009, 97 (03) :513-552
[4]   Super-stretchable, Transparent Carbon Nanotube-Based Capacitive Strain Sensors for Human Motion Detection [J].
Cai, Le ;
Song, Li ;
Luan, Pingshan ;
Zhang, Qiang ;
Zhang, Nan ;
Gao, Qingqing ;
Zhao, Duan ;
Zhang, Xiao ;
Tu, Min ;
Yang, Feng ;
Zhou, Wenbin ;
Fan, Qingxia ;
Luo, Jun ;
Zhou, Weiya ;
Ajayan, Pulickel M. ;
Xie, Sishen .
SCIENTIFIC REPORTS, 2013, 3
[5]   Flexible Piezoelectric-Induced Pressure Sensors for Static Measurements Based on Nanowires/Graphene Heterostructures [J].
Chen, Zefeng ;
Wang, Zhao ;
Li, Xinming ;
Lin, Yuxuan ;
Luo, Ningqi ;
Long, Mingzhu ;
Zhao, Ni ;
Xu, Jian-Bin .
ACS NANO, 2017, 11 (05) :4507-4513
[6]   Stretchable Thin-Film Electrodes for Flexible Electronics with High Deformability and Stretchability [J].
Cheng, Tao ;
Zhang, Yizhou ;
Lai, Wen-Yong ;
Huang, Wei .
ADVANCED MATERIALS, 2015, 27 (22) :3349-3376
[7]   Design and development of a flexible strain sensor for textile structures based on a conductive polymer composite [J].
Cochrane, Cedric ;
Koncar, Vladan ;
Lewandowski, Maryline ;
Dufour, Claude .
SENSORS, 2007, 7 (04) :473-492
[8]   Multi-Functional Integration of Organic Field-Effect Transistors (OFETs): Advances and Perspectives [J].
Di, Chong-an ;
Zhang, Fengjiao ;
Zhu, Daoben .
ADVANCED MATERIALS, 2013, 25 (03) :313-330
[9]   Development of polyimide flexible tactile sensor skin [J].
Engel, J ;
Chen, J ;
Liu, C .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2003, 13 (03) :359-366
[10]   Superlubric Sliding of Graphene Nanoflakes on Graphene [J].
Feng, Xiaofeng ;
Kwon, Sangku ;
Park, Jeong Young ;
Salmeron, Miquel .
ACS NANO, 2013, 7 (02) :1718-1724