On Popa's Cocycle Superrigidity Theorem

被引:21
作者
Furman, Alex [1 ]
机构
[1] Univ Illinois, Chicago, IL 60607 USA
基金
美国国家科学基金会;
关键词
D O I
10.1093/imrn/rnm073
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
These notes contain an Ergodic-theoretic account of the Cocycle Superrigidity Theorem recently discovered by Sorin Popa. We state and prove a relative version of the result, discuss some applications to measurable equivalence relations, and point out that Gaussian actions (of "rigid" groups) satisfy the assumptions of Popa's theorem.
引用
收藏
页数:46
相关论文
共 38 条
[1]  
Cherix P-A, 2001, PROGR MATH, V197
[2]   PROPERTY-T AND ASYMPTOTICALLY INVARIANT SEQUENCES [J].
CONNES, A ;
WEISS, B .
ISRAEL JOURNAL OF MATHEMATICS, 1980, 37 (03) :209-210
[3]  
DELAHARPE P, 1989, ASTERISQUE, V175, P158
[4]   Relative property (T) and linear groups [J].
Fernos, Talia .
ANNALES DE L INSTITUT FOURIER, 2006, 56 (06) :1767-1804
[5]  
Furman A, 2005, COMMENT MATH HELV, V80, P157
[6]   Orbit equivalence rigidity [J].
Furman, A .
ANNALS OF MATHEMATICS, 1999, 150 (03) :1083-1108
[7]   Gromov's measure equivalence and rigidity of higher rank lattices [J].
Furman, A .
ANNALS OF MATHEMATICS, 1999, 150 (03) :1059-1081
[8]   Mostow-Margulis rigidity with locally compact targets [J].
Furman, A .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2001, 11 (01) :30-59
[9]  
FURMAN A, COHOMOLOGY IN PRESS
[10]   ERGODIC BEHAVIOR OF DIAGONAL MEASURES AND A THEOREM OF SZEMEREDI ON ARITHMETIC PROGRESSIONS [J].
FURSTENBERG, H .
JOURNAL D ANALYSE MATHEMATIQUE, 1977, 31 :204-256