Analyticity properties of Graham-Witten anomalies

被引:4
作者
Asnin, Vadim [1 ]
机构
[1] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
关键词
D O I
10.1088/0264-9381/25/14/145013
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Analytic properties of Graham-Witten anomalies are considered. Weyl anomalies according to their analytic properties are of type A (coming from delta-singularities in correlators of several energy-momentum tensors) or of type B (originating in counterterms which depend logarithmically on a mass scale). It is argued that all Graham-Witten anomalies can be divided into two groups, internal and external, and that all external anomalies are of type B, whereas among internal anomalies there is one term of type A and all the rest are of type B. This argument is checked explicitly for the case of a free scalar field in a six-dimensional space with a two-dimensional submanifold.
引用
收藏
页数:12
相关论文
共 12 条
[1]  
ASNIN V, 2000, THESIS FEINBERG GRAD
[2]   WEYL COCYCLES [J].
BONORA, L ;
PASTI, P ;
BREGOLA, M .
CLASSICAL AND QUANTUM GRAVITY, 1986, 3 (04) :635-649
[3]   BROKEN SCALE INVARIANCE IN SCALAR FIELD THEORY [J].
CALLAN, CG .
PHYSICAL REVIEW D, 1970, 2 (08) :1541-&
[4]   A NEW IMPROVED ENERGY-MOMENTUM TENSOR [J].
CALLAN, CG ;
COLEMAN, S ;
JACKIW, R .
ANNALS OF PHYSICS, 1970, 59 (01) :42-&
[5]   NONLOCAL CONFORMAL ANOMALIES [J].
DESER, S ;
DUFF, MJ ;
ISHAM, CJ .
NUCLEAR PHYSICS B, 1976, 111 (01) :45-55
[6]   GEOMETRIC CLASSIFICATION OF CONFORMAL ANOMALIES IN ARBITRARY DIMENSIONS [J].
DESER, S ;
SCHWIMMER, A .
PHYSICS LETTERS B, 1993, 309 (3-4) :279-284
[7]  
Graham CR, 1999, NUCL PHYS B, V546, P52, DOI 10.1016/S0550-3213(99)00055-3
[8]  
Gustavsson A, 2004, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2004/07/074
[9]  
Henningson M, 1999, J HIGH ENERGY PHYS
[10]   The holographic Weyl anomaly [J].
Henningson, M ;
Skenderis, K .
JOURNAL OF HIGH ENERGY PHYSICS, 1998, (07) :XXXIII-11