A generalized contraction principle with control functions on partial metric spaces

被引:76
作者
Abdeljawad, Thabet [1 ]
Karapinar, Erdal [2 ]
Tas, Kenan [1 ]
机构
[1] Cankaya Univ, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
[2] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey
关键词
Partial metric space; Fixed point; Generalized contraction principle; Control functions; FIXED-POINT THEOREMS;
D O I
10.1016/j.camwa.2011.11.035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Partial metric spaces were introduced by Matthews in 1994 as a part of the study of denotational semantics of data flow networks. In this article, we prove a generalized contraction principle with control functions phi and psi on partial metric spaces. The theorems we prove generalize many previously obtained results. We also give some examples showing that our theorems are indeed proper extensions. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:716 / 719
页数:4
相关论文
共 25 条
[1]   Existence and uniqueness of a common fixed point on partial metric spaces [J].
Abdeljawad, T. ;
Karapinar, E. ;
Tas, K. .
APPLIED MATHEMATICS LETTERS, 2011, 24 (11) :1900-1904
[2]   Fixed points for generalized weakly contractive mappings in partial metric spaces [J].
Abdeljawad, Thabet .
MATHEMATICAL AND COMPUTER MODELLING, 2011, 54 (11-12) :2923-2927
[3]   Fixed Point Theorems for Monotone Mappings on Partial Metric Spaces [J].
Altun, Ishak ;
Erduran, Ali .
FIXED POINT THEORY AND APPLICATIONS, 2011,
[4]   Generalized contractions on partial metric spaces [J].
Altun, Ishak ;
Sola, Ferhan ;
Simsek, Hakan .
TOPOLOGY AND ITS APPLICATIONS, 2010, 157 (18) :2778-2785
[5]  
[Anonymous], 2008, An. Univ. Vest Timisoara, MatInform.
[6]   ON NONLINEAR CONTRACTIONS [J].
BOYD, DW ;
WONG, JSW .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 20 (02) :458-&
[7]   A Generalisation of Contraction Principle in Metric Spaces [J].
Dutta, P. N. ;
Choudhury, Binayak S. .
FIXED POINT THEORY AND APPLICATIONS, 2008, 2008 (1)
[8]  
Frechet M., 1906, Rendiconti Circolo Matematico Palermo, V22, P1, DOI [DOI 10.1007/BF03018603, 10.1007/BF03018603]
[9]  
Karapinar E., 2011, MATH AETERNA, V1, P237
[10]   Generalizations of Caristi Kirk's Theorem on Partial Metric Spaces [J].
Karapinar, Erdal .
FIXED POINT THEORY AND APPLICATIONS, 2011,