Fast Primal-Dual Gradient Method for Strongly Convex Minimization Problems with Linear Constraints

被引:24
作者
Chernov, Alexey [1 ]
Dvurechensky, Pavel [2 ,3 ]
Gasnikov, Alexander [4 ,5 ]
机构
[1] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Oblast, Russia
[2] Weierstrass Inst Appl Anal & Stochast, D-10117 Berlin, Germany
[3] Inst Informat Transmiss Problems, Moscow 127051, Russia
[4] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Oblast, Russia
[5] Inst Informat Transmiss Problems, Moscow 127051, Russia
来源
DISCRETE OPTIMIZATION AND OPERATIONS RESEARCH, DOOR 2016 | 2016年 / 9869卷
关键词
Convex optimization; Algorithm complexity; Entropy-linear programming; Dual problem; Primal-dual method; DECOMPOSITION;
D O I
10.1007/978-3-319-44914-2_31
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we consider a class of optimization problems with a strongly convex objective function and the feasible set given by an intersection of a simple convex set with a set given by a number of linear equality and inequality constraints. Quite a number of optimization problems in applications can be stated in this form, examples being entropy-linear programming, ridge regression, elastic net, regularized optimal transport, etc. We extend the Fast Gradient Method applied to the dual problem in order to make it primal-dual, so that it allows not only to solve the dual problem, but also to construct nearly optimal and nearly feasible solution of the primal problem. We also prove a theorem about the convergence rate for the proposed algorithm in terms of the objective function residual and the linear constraints infeasibility.
引用
收藏
页码:391 / 403
页数:13
相关论文
共 21 条
[1]  
[Anonymous], 1989, Maximum-entropy models in science and engineering
[2]   ITERATIVE BREGMAN PROJECTIONS FOR REGULARIZED TRANSPORTATION PROBLEMS [J].
Benamou, Jean-David ;
Carlier, Guillaume ;
Cuturi, Marco ;
Nenna, Luca ;
Peyre, Gabriel .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (02) :A1111-A1138
[3]  
Bregman L.M., 1967, USSR COMP MATH MATH, V7, P191, DOI [10.1016/0041-5553(67)90069-9, DOI 10.1016/0041-5553(67)90069-9]
[4]  
Bregman L. M., 1967, USSR COMP MATH MATH, V7, P200, DOI [10.1016/0041- 5553(67)90040-7, 10.1016/0041-5553(67)90040-7]
[5]  
Cuturi M., 2013, ADV NEURAL INFORM PR, V2, P4, DOI DOI 10.48550/ARXIV.1306.0895
[6]   First-order methods of smooth convex optimization with inexact oracle [J].
Devolder, Olivier ;
Glineur, Francois ;
Nesterov, Yurii .
MATHEMATICAL PROGRAMMING, 2014, 146 (1-2) :37-75
[7]  
Fang S.-C., 1997, KLUWERS INT SERIES
[8]   FUNCTION MINIMIZATION BY CONJUGATE GRADIENTS [J].
FLETCHER, R ;
REEVES, CM .
COMPUTER JOURNAL, 1964, 7 (02) :149-&
[9]   ON THE SCALING OF MULTIDIMENSIONAL MATRICES [J].
FRANKLIN, J ;
LORENZ, J .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1989, 114 :717-735
[10]   Efficient numerical methods for entropy-linear programming problems [J].
Gasnikov, A. V. ;
Gasnikova, E. B. ;
Nesterov, Yu. E. ;
Chernov, A. V. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2016, 56 (04) :514-524