Data-driven identification of vehicle dynamics using Koopman operator

被引:0
|
作者
Cibulka, Vit [1 ]
Hanis, Tomas [1 ]
Hromcik, Martin [1 ]
机构
[1] Czech Tech Univ, Fac Elect Engn, Dept Control Engn, Prague, Czech Republic
来源
PROCEEDINGS OF THE 2019 22ND INTERNATIONAL CONFERENCE ON PROCESS CONTROL (PC19) | 2019年
关键词
Koopman operator; eigenfunctions; basis functions; data-driven methods; identification;
D O I
10.1109/pc.2019.8815104
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents the results of identification of vehicle dynamics using the Koopman operator. The basic idea is to transform the state space of a nonlinear system (a car in our case) to a higher-dimensional space, using so-called basis functions, where the system dynamics is linear. The selection of basis functions is crucial and there is no general approach on how to select them, this paper gives some discussion on this topic. Two distinct approaches for selecting the basis functions are presented. The first approach, based on Extended Dynamic Mode Decomposition, relies heavily on expert basis selection and is completely data-driven. The second approach utilizes the knowledge of the nonlinear dynamics, which is used to construct eigenfunctions of the Koopman operator which are known by definition to evolve linearly along the nonlinear system trajectory. The eigenfunctions are then used as basis functions for prediction. Each approach is presented with a numerical example and discussion on the feasibility of the approach for a nonlinear vehicle system.
引用
收藏
页码:167 / 172
页数:6
相关论文
共 50 条
  • [1] Data-driven spectral analysis of the Koopman operator
    Korda, Milan
    Putinar, Mihai
    Mezic, Igor
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2020, 48 (02) : 599 - 629
  • [2] Data-driven transient stability analysis using the Koopman operator
    Matavalam, Amar Ramapuram
    Hou, Boya
    Choi, Hyungjin
    Bose, Subhonmesh
    Vaidya, Umesh
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2024, 162
  • [3] Data-Driven Fault Detection and Isolation for Multirotor System Using Koopman Operator
    Lee, Jayden Dongwoo
    Im, Sukjae
    Kim, Lamsu
    Ahn, Hyungjoo
    Bang, Hyochoong
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2024, 110 (03)
  • [4] Data-driven Estimation for a Region of Attraction for Transient Stability Using the Koopman Operator
    Zheng, Le
    Liu, Xin
    Xu, Yanhui
    Hu, Wei
    Liu, Chongru
    CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, 2023, 9 (04): : 1405 - 1413
  • [5] Data-Driven Models for Control Engineering Applications Using the Koopman Operator
    Junker, Annika
    Timmermann, Julia
    Traechtler, Ansgar
    2022 3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, ROBOTICS AND CONTROL, AIRC, 2022, : 1 - 9
  • [6] Data-Driven Predictive Control of Interconnected Systems Using the Koopman Operator
    Tellez-Castro, Duvan
    Garcia-Tenorio, Camilo
    Mojica-Nava, Eduardo
    Sofrony, Jorge
    Vande Wouwer, Alain
    ACTUATORS, 2022, 11 (06)
  • [7] Data-Driven Control of Soft Robots Using Koopman Operator Theory
    Bruder, Daniel
    Fu, Xun
    Gillespie, R. Brent
    Remy, C. David
    Vasudevan, Ram
    IEEE TRANSACTIONS ON ROBOTICS, 2021, 37 (03) : 948 - 961
  • [8] Robust data-driven control for nonlinear systems using the Koopman operator
    Straesser, Robin
    Berberich, Julian
    Allgower, Frank
    IFAC PAPERSONLINE, 2023, 56 (02): : 2257 - 2262
  • [9] Data-driven Koopman operator approach for computational neuroscience
    Marrouch, Natasza
    Slawinska, Joanna
    Giannakis, Dimitrios
    Read, Heather L.
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2020, 88 (11-12) : 1155 - 1173
  • [10] Modularized data-driven approximation of the Koopman operator and generator
    Guo, Yang
    Schaller, Manuel
    Worthmann, Karl
    Streif, Stefan
    PHYSICA D-NONLINEAR PHENOMENA, 2025, 476