Noncommutative Maslov index and -forms reconsidered

被引:0
作者
Wahl, Charlotte [1 ]
机构
[1] Leibniz Arch, Waterloostr 8, D-30169 Hannover, Germany
来源
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG | 2016年 / 86卷 / 02期
关键词
Maslov index; Lagrangian subspaces; eta-Invariants; K-theory for C*-algebras;
D O I
10.1007/s12188-016-0131-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Invariants for Lagrangians of symplectic vector spaces, such as the Maslov index for paths and the Maslov triple index, have many applications in symplectic geometry and index theory. Here we study the properties of their generalizations for modules over -algebras and correct an error in our earlier work on the subject.
引用
收藏
页码:177 / 188
页数:12
相关论文
共 18 条
[1]  
Barge J., 2008, SUITES STURM INDICE
[2]  
Blackadar B, 1998, K-theory for operator algebras, volume 5 of Mathematical Sciences Research Institute Publications, V5
[3]  
Bourrigan M., COMMUNICATION
[4]  
Bunke U, 1998, MANUSCRIPTA MATH, V95, P189
[5]  
BUNKE U, 1995, J DIFFER GEOM, V41, P397
[6]   ON THE MASLOV INDEX [J].
CAPPELL, SE ;
LEE, R ;
MILLER, EY .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1994, 47 (02) :121-186
[7]  
Karoubi M., 1987, ASTERISQUE, V149, P47
[8]  
Lannes J., COMMUNICATION
[9]   Elliptic operators and higher signatures [J].
Leichtnam, E ;
Piazza, P .
ANNALES DE L INSTITUT FOURIER, 2004, 54 (05) :1197-+
[10]   Dirac index classes and the noncommutative spectral flow [J].
Leichtnam, E ;
Piazza, P .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 200 (02) :348-400