Gd0.2Ce0.8O2 Diffusion Barrier Layer between (La0.58Sr0.4)(Co0.2Fe0.8)O3-δ Cathode and Y0.16Zr0.84O2 Electrolyte for Solid Oxide Fuel Cells: Effect of Barrier Layer Sintering Temperature on Microstructure

被引:43
|
作者
Wilde, Virginia [1 ]
Stoermer, Heike [1 ]
Szasz, Julian [2 ]
Wankmueller, Florian [2 ]
Ivers-Tiffee, Ellen [2 ]
Gerthsen, Dagmar [1 ]
机构
[1] KIT, Lab Elektronenmikroskopie, Engesserstr 7, D-76131 Karlsruhe, Germany
[2] KIT, Inst Angew Mat, Werkstoffe Elektrotech, Adenauerring 20b, D-76131 Karlsruhe, Germany
来源
ACS APPLIED ENERGY MATERIALS | 2018年 / 1卷 / 12期
关键词
solid oxide fuel cell; cathode/electrolyte interface; GDC interdiffusion barrier; area specific resistance; analytical transmission electron microscopy; FERRITE-BASED PEROVSKITES; RARE-EARTH-OXIDE; SRZRO3; FORMATION; DOPED CERIA; PERFORMANCE; INTERFACE; BOUNDARY; PHASE; GD; LA;
D O I
10.1021/acsaem.8b00847
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Combining high-performance (La0.58Sr0.4)(Co0.2Fe0.8)O3-delta (LSCF) cathodes with Y-doped ZrO2(YDZ) electrolytes in solid oxide fuel cells leads to the formation of SrZrO3 (SZO) as secondary phase with exceedingly low oxygen ion conductivity and poor catalytic capability. A promising prevention strategy is the insertion of Gd-doped CeO2 (GDC) as a reaction barrier. In this work, screen-printed GDC layers were sintered on YDZ substrates at temperatures varying from 1100 to 1400 degrees C. Subsequently, screen-printed LSCF was sintered on top at 1080 degrees C. The goal of this work was to understand microstructure formation during the two subsequent sintering processes by the analysis of nanometer-scale elemental distributions, crystal structures, and grain sizes of this extended cathode/electrolyte interface as a function of the GDC sintering temperature. Various representative regions on all samples were analyzed by transmission electron microscopy combined with energy dispersive X-ray spectroscopy with high spatial resolution. For the lowest GDC sintering temperature an almost continuous ion-blocking SZO layer is formed during subsequent LSCF sintering. Although GDC densification does not occur, SZO formation is increasingly suppressed if higher GDC sintering temperatures are applied. This is attributed to a dense interdiffusion layer forming at the GDC/YDZ interface, which increases in thickness with GDC sintering temperature and contains a Zr-depleted region adjacent to the porous GDC layer. The dense and Zr-poor sublayer prevents the reaction of Sr species transported via gas phase during LSCF sintering with the Zr-rich YDZ substrate. The microstructural features have a pronounced influence on the electrical performance. Electrochemical impedance spectroscopy measurements at open circuit voltage conditions reveal differences in the polarization resistance of up to 3 orders of magnitude.
引用
收藏
页码:6790 / 6800
页数:21
相关论文
共 50 条
  • [31] Improved Sr0.6La0.4Co0.8Fe0.2O3-δ/Ce0.8Y0.2O2-δ interface for IT-SOFC applications
    Baque, L.
    Padmasree, K. P.
    Reyes, M. A. Ceniceros
    Troiani, H.
    Serquis, A.
    Soldati, A.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (03) : 1958 - 1965
  • [32] Microstructure and impedance analysis of La0.6Sr0.4Co0.2Fe0.8O3-δ for solid oxide fuel cell cathode
    Su Dan
    Zhu Man-Kang
    Hou Yu-Dong
    Wang Hao
    Yan Hui
    JOURNAL OF INORGANIC MATERIALS, 2008, 23 (04) : 719 - 724
  • [33] High-performance anode-supported solid oxide fuel cells with co-fired Sm0.2Ce0.8O2-δ/ La0.8Sr0.2Ga0.8Mg0.2O3-δ/Sm0.2Ce0.8O2-δ sandwiched electrolyte
    Wang, Sea-Fue
    Lu, Hsi-Chuan
    Hsu, Yung-Fu
    Jasinski, Piotr
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (08) : 5429 - 5438
  • [34] Kinetics of oxygen reaction in porous La0.6Sr0.4Co0.2Fe0.8O3-δ-Ce0.8Gd0.2O1.9 composite electrodes for solid oxide cells
    Wang, Jingle
    Yang, Zhibin
    Yang, Kaichuang
    Peng, Suping
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (50) : 25608 - 25619
  • [35] TiO2-modified La0.6Sr0.4Co0.2Fe0.8O3-δ cathode for intermediate temperature solid oxide fuel cells
    Liu, Weixing
    Zhao, Zhe
    Tu, Baofeng
    Cui, Daan
    Ou, Dingrong
    Cheng, Mojie
    CHINESE JOURNAL OF CATALYSIS, 2015, 36 (04) : 502 - 508
  • [36] Enhancement of Solid Oxide Fuel Cell Performance by La0.6Sr0.4Co0.2Fe0.8O3-δ Double-Layer Cathode
    Hsu, Ching-Shiung
    Hwang, Bing-Hwai
    Xie, Yongsong
    Zhang, Xinge
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (12) : B1240 - B1243
  • [37] A straightforward and practical method for integrating highly active Sm0.5Sr0.5CoO3 into a conventional La0.6Sr0.4Co0.2Fe0.8O3–Gd0.2Ce0.8O2 composite cathode
    Seol Hee Oh
    Sun-Young Park
    Sewon Kim
    Kyung Joong Yoon
    Hyeong Cheol Shin
    Kyoung Tae Lim
    Jong-Ho Lee
    Journal of the Korean Ceramic Society, 2024, 61 (1) : 34 - 43
  • [38] Improved bi-layer electrolytes of solid oxide cells: the role of a Sm0.2Ce0.8O2-δ diffusion barrier layer
    Kim, Su-Wan
    Jeong, Hae-In
    Kim, Dong-Yeon
    Park, Beom-Kyeong
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (38) : 26188 - 26196
  • [39] Liquid plasma sprayed nano-network La0.4Sr0.6Co0.2Fe0.8O3/Ce0.8Gd0.2O2 composite as a high-performance cathode for intermediate-temperature solid oxide fuel cells
    Zhang, Shan-Lin
    Li, Chang-Jiu
    Li, Cheng-Xin
    Yang, Guan-Jun
    Huang, Kevin
    Liu, Meilin
    JOURNAL OF POWER SOURCES, 2016, 327 : 622 - 628
  • [40] A La0.8Sr0.2MnO3/La0.6Sr0.4Co0.2Fe0.8O3-δ core-shell structured cathode by a rapid sintering process for solid oxide fuel cells
    Ai, Na
    Chen, Kongfa
    Jiang, San Ping
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (10) : 7246 - 7251