Gd0.2Ce0.8O2 Diffusion Barrier Layer between (La0.58Sr0.4)(Co0.2Fe0.8)O3-δ Cathode and Y0.16Zr0.84O2 Electrolyte for Solid Oxide Fuel Cells: Effect of Barrier Layer Sintering Temperature on Microstructure

被引:43
作者
Wilde, Virginia [1 ]
Stoermer, Heike [1 ]
Szasz, Julian [2 ]
Wankmueller, Florian [2 ]
Ivers-Tiffee, Ellen [2 ]
Gerthsen, Dagmar [1 ]
机构
[1] KIT, Lab Elektronenmikroskopie, Engesserstr 7, D-76131 Karlsruhe, Germany
[2] KIT, Inst Angew Mat, Werkstoffe Elektrotech, Adenauerring 20b, D-76131 Karlsruhe, Germany
来源
ACS APPLIED ENERGY MATERIALS | 2018年 / 1卷 / 12期
关键词
solid oxide fuel cell; cathode/electrolyte interface; GDC interdiffusion barrier; area specific resistance; analytical transmission electron microscopy; FERRITE-BASED PEROVSKITES; RARE-EARTH-OXIDE; SRZRO3; FORMATION; DOPED CERIA; PERFORMANCE; INTERFACE; BOUNDARY; PHASE; GD; LA;
D O I
10.1021/acsaem.8b00847
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Combining high-performance (La0.58Sr0.4)(Co0.2Fe0.8)O3-delta (LSCF) cathodes with Y-doped ZrO2(YDZ) electrolytes in solid oxide fuel cells leads to the formation of SrZrO3 (SZO) as secondary phase with exceedingly low oxygen ion conductivity and poor catalytic capability. A promising prevention strategy is the insertion of Gd-doped CeO2 (GDC) as a reaction barrier. In this work, screen-printed GDC layers were sintered on YDZ substrates at temperatures varying from 1100 to 1400 degrees C. Subsequently, screen-printed LSCF was sintered on top at 1080 degrees C. The goal of this work was to understand microstructure formation during the two subsequent sintering processes by the analysis of nanometer-scale elemental distributions, crystal structures, and grain sizes of this extended cathode/electrolyte interface as a function of the GDC sintering temperature. Various representative regions on all samples were analyzed by transmission electron microscopy combined with energy dispersive X-ray spectroscopy with high spatial resolution. For the lowest GDC sintering temperature an almost continuous ion-blocking SZO layer is formed during subsequent LSCF sintering. Although GDC densification does not occur, SZO formation is increasingly suppressed if higher GDC sintering temperatures are applied. This is attributed to a dense interdiffusion layer forming at the GDC/YDZ interface, which increases in thickness with GDC sintering temperature and contains a Zr-depleted region adjacent to the porous GDC layer. The dense and Zr-poor sublayer prevents the reaction of Sr species transported via gas phase during LSCF sintering with the Zr-rich YDZ substrate. The microstructural features have a pronounced influence on the electrical performance. Electrochemical impedance spectroscopy measurements at open circuit voltage conditions reveal differences in the polarization resistance of up to 3 orders of magnitude.
引用
收藏
页码:6790 / 6800
页数:21
相关论文
共 47 条
  • [1] STRUCTURE OF ORTHORHOMBIC SRZRO3 BY NEUTRON POWDER DIFFRACTION
    AHTEE, A
    AHTEE, M
    GLAZER, AM
    HEWAT, AW
    [J]. ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 1976, 32 (DEC15): : 3243 - 3246
  • [2] Oxygen Transport Kinetics of Mixed Ionic-Electronic Conductors by Coupling Focused Ion Beam Tomography and Electrochemical Impedance Spectroscopy
    Almar, Laura
    Szasz, Julian
    Weber, Andre
    Ivers-Tiffee, Ellen
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (04) : F289 - F297
  • [3] Decomposition of 8.5 mol.% Y2O3-doped zirconia and its contribution to the degradation of ionic conductivity
    Butz, B.
    Schneider, R.
    Gerthsen, D.
    Schowalter, M.
    Rosenauer, A.
    [J]. ACTA MATERIALIA, 2009, 57 (18) : 5480 - 5490
  • [4] DIFFUSION-INDUCED GRAIN-BOUNDARY MIGRATION AND RECRYSTALLIZATION, EXEMPLIFIED BY THE SYSTEM CU-ZN
    DENBROEDER, FJA
    [J]. THIN SOLID FILMS, 1985, 124 (02) : 135 - 148
  • [5] Elucidating the origin of oxide ion blocking effects at GDC/SrZr(Y)O3/YSZ interfaces
    Develos-Bagarinao, Katherine
    Yokokawa, Harumi
    Kishimoto, Haruo
    Ishiyama, Tomohiro
    Yamaji, Katsuhiko
    Horita, Teruhisa
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (18) : 8733 - 8743
  • [6] GROWTH-KINETICS OF PLANAR BINARY DIFFUSION COUPLES - THIN-FILM CASE VERSUS BULK CASES
    GOSELE, U
    TU, KN
    [J]. JOURNAL OF APPLIED PHYSICS, 1982, 53 (04) : 3252 - 3260
  • [7] Phase relation studies in the CeO2-Gd2O3-ZrO2 system
    Grover, V
    Tyagi, AK
    [J]. JOURNAL OF SOLID STATE CHEMISTRY, 2004, 177 (11) : 4197 - 4204
  • [8] Structural analysis of excess-anion C-type rare earth oxide:: a case study with Gd1-xCexO1.5+x/2 (X = 0.20 and 0.40)
    Grover, V
    Achary, SN
    Tyagi, AK
    [J]. JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2003, 36 : 1082 - 1084
  • [9] Nanoscaled La0.6Sr0.4CoO3-δ as intermediate temperature solid oxide fuel cell cathode: Microstructure and electrochemical performance
    Hayd, Jan
    Dieterle, Levin
    Guntow, Uwe
    Gerthsen, Dagmar
    Ivers-Tiffee, Ellen
    [J]. JOURNAL OF POWER SOURCES, 2011, 196 (17) : 7263 - 7270
  • [10] CHEMICALLY-INDUCED GRAIN-BOUNDARY MIGRATION
    HILLERT, M
    PURDY, GR
    [J]. ACTA METALLURGICA, 1978, 26 (02): : 333 - 340