Gd0.2Ce0.8O2 Diffusion Barrier Layer between (La0.58Sr0.4)(Co0.2Fe0.8)O3-δ Cathode and Y0.16Zr0.84O2 Electrolyte for Solid Oxide Fuel Cells: Effect of Barrier Layer Sintering Temperature on Microstructure

被引:43
|
作者
Wilde, Virginia [1 ]
Stoermer, Heike [1 ]
Szasz, Julian [2 ]
Wankmueller, Florian [2 ]
Ivers-Tiffee, Ellen [2 ]
Gerthsen, Dagmar [1 ]
机构
[1] KIT, Lab Elektronenmikroskopie, Engesserstr 7, D-76131 Karlsruhe, Germany
[2] KIT, Inst Angew Mat, Werkstoffe Elektrotech, Adenauerring 20b, D-76131 Karlsruhe, Germany
来源
ACS APPLIED ENERGY MATERIALS | 2018年 / 1卷 / 12期
关键词
solid oxide fuel cell; cathode/electrolyte interface; GDC interdiffusion barrier; area specific resistance; analytical transmission electron microscopy; FERRITE-BASED PEROVSKITES; RARE-EARTH-OXIDE; SRZRO3; FORMATION; DOPED CERIA; PERFORMANCE; INTERFACE; BOUNDARY; PHASE; GD; LA;
D O I
10.1021/acsaem.8b00847
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Combining high-performance (La0.58Sr0.4)(Co0.2Fe0.8)O3-delta (LSCF) cathodes with Y-doped ZrO2(YDZ) electrolytes in solid oxide fuel cells leads to the formation of SrZrO3 (SZO) as secondary phase with exceedingly low oxygen ion conductivity and poor catalytic capability. A promising prevention strategy is the insertion of Gd-doped CeO2 (GDC) as a reaction barrier. In this work, screen-printed GDC layers were sintered on YDZ substrates at temperatures varying from 1100 to 1400 degrees C. Subsequently, screen-printed LSCF was sintered on top at 1080 degrees C. The goal of this work was to understand microstructure formation during the two subsequent sintering processes by the analysis of nanometer-scale elemental distributions, crystal structures, and grain sizes of this extended cathode/electrolyte interface as a function of the GDC sintering temperature. Various representative regions on all samples were analyzed by transmission electron microscopy combined with energy dispersive X-ray spectroscopy with high spatial resolution. For the lowest GDC sintering temperature an almost continuous ion-blocking SZO layer is formed during subsequent LSCF sintering. Although GDC densification does not occur, SZO formation is increasingly suppressed if higher GDC sintering temperatures are applied. This is attributed to a dense interdiffusion layer forming at the GDC/YDZ interface, which increases in thickness with GDC sintering temperature and contains a Zr-depleted region adjacent to the porous GDC layer. The dense and Zr-poor sublayer prevents the reaction of Sr species transported via gas phase during LSCF sintering with the Zr-rich YDZ substrate. The microstructural features have a pronounced influence on the electrical performance. Electrochemical impedance spectroscopy measurements at open circuit voltage conditions reveal differences in the polarization resistance of up to 3 orders of magnitude.
引用
收藏
页码:6790 / 6800
页数:21
相关论文
共 50 条
  • [1] Nature and Functionality of La0.58Sr0.4Co0.2Fe0.8O3-δ / Gd0.2Ce0.8O2-δ / Y0.16Zr0.84O2-δ Interfaces in SOFCs
    Szasz, Julian
    Wankmueller, Florian
    Wilde, Virginia
    Stoermer, Heike
    Gerthsen, Dagmar
    Menzler, Norbert H.
    Ivers-Tiffee, Ellen
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (10) : F898 - F906
  • [2] Characterization of La0.58Sr0.4Co0.2Fe0.8O3-δ-Ce0.8Gd0.2O2 composite cathode for intermediate temperature solid oxide fuel cells
    Li, Na
    Verma, Atul
    Singh, Prabhakar
    Kim, Jeong-Ho
    CERAMICS INTERNATIONAL, 2013, 39 (01) : 529 - 538
  • [3] Ce0.8Gd0.2O2 modification on La0.6Sr0.4Co0.2Fe0.8O3 cathode for improving a cell performance in intermediate temperature solid oxide fuel cells
    Yun, Jeong Woo
    Han, Jonghee
    Yoon, Sung Pil
    Park, Sanggyun
    Kim, Hee Su
    Nam, Suk Woo
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2011, 17 (03) : 439 - 444
  • [4] Effect of sintering temperature on the performance of composite La0.6Sr0.4Co0.2Fe0.8O3-Ce0.9Gd0.1O2 cathode for solid oxide fuel cells
    Solovyev, A. A.
    Ionov, I. V.
    Shipilova, A. V.
    Maloney, P. D.
    JOURNAL OF ELECTROCERAMICS, 2018, 40 (02) : 150 - 155
  • [5] Effect of sintering temperature on the performance of composite La0.6Sr0.4Co0.2Fe0.8O3–Ce0.9Gd0.1O2 cathode for solid oxide fuel cells
    A. A. Solovyev
    I. V. Ionov
    A. V. Shipilova
    P. D. Maloney
    Journal of Electroceramics, 2018, 40 : 150 - 155
  • [6] Synthesis and characterisation of La0.6Sr0.4Co0.8Fe0.2O3-δ-Gd0.2Ce0.8O1.9 composite cathode for Gd0.2Ce0.8O1.9 electrolyte SOFC
    Cheng, J.
    Tian, C.
    Zhu, R.
    MATERIALS RESEARCH INNOVATIONS, 2014, 18 (06) : 461 - 464
  • [7] Enhanced performance and stability of interlayer-free La0.6Sr0.4Co0.2Fe0.8O3-δ-Ce0.8Zr0.2O2-δ cathode for solid oxide fuel cells
    Liu, Weixing
    Zhao, Zhe
    Tu, Baofeng
    Cui, Daan
    Ou, Dingrong
    Cheng, Mojie
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (14) : 4861 - 4867
  • [8] Comparative study of La0.6Sr0.4Co0.2Fe0.8O3, Ba0.5Sr0.5Co0.2Fe0.8O3 and Sm0.5Sr0.5Co0.2Fe0.8O3 cathodes and the effect of Sm0.2Ce0.8O2 block layer in solid oxide fuel cells
    Shen, Fengyu
    Lu, Kathy
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (46) : 16457 - 16465
  • [9] Performance of a La0.6Sr0.4Co0.8Fe0.2O3-Ce0.8Gd0.2O1.9-Ag cathode for ceria electrolyte SOFCs
    Wang, SR
    Kato, T
    Nagata, S
    Honda, T
    Kaneko, T
    Iwashita, N
    Dokiya, M
    SOLID STATE IONICS, 2002, 146 (3-4) : 203 - 210
  • [10] Performance of La0.1Sr0.9Co0.8Fe0.2O3-δ and La0.1Sr0.9Co0.8Fe0.2O3-δ-Ce0.9Gd0.1O2 oxygen electrodes with Ce0.9Gd0.1O2 barrier layer in reversible solid oxide fuel cells
    Choi, Moon-Bong
    Singh, Bhupendra
    Wachsman, Eric D.
    Song, Sun-Ju
    JOURNAL OF POWER SOURCES, 2013, 239 : 361 - 373