Explicit CM theory for level 2-structures on abelian surfaces

被引:0
作者
Broeker, Reinier [1 ]
Gruenewald, David [2 ]
Lauter, Kristin [3 ]
机构
[1] Brown Univ, Dept Math, Providence, RI 02912 USA
[2] Univ Caen, UFR Sci, CNRS UMR 5139, Lab Math Nicolas Oresme, F-14032 Caen, France
[3] Microsoft Res, Redmond, WA 98052 USA
关键词
abelian surface; isogeny; level structure; SIEGEL MODULAR-FORMS; GENUS; 2; CURVES; CRYPTOGRAPHY; POLYNOMIALS; REDUCTION; FIELDS; BOUNDS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a complex abelian surface A with endomorphism ring isomorphic to the maximal order in a quartic CM field K, the Igusa invariants j(1)(A), j(2)(A), j(3)(A), generate an unramified abelian extension of the reflex field of K. In this paper we give an explicit geometric description of the Galois action of the class group of this reflex field on j(1)(A), j(2)(A), j(3)(A),. Our description can be expressed by maps between various Siegel modular varieties, and we can explicitly compute the action for ideals of small norm. We use the Galois action to modify the CRT method for computing Igusa class polynomials, and our run time analysis shows that this yields a significant improvement. Furthermore, we find cycles in isogeny graphs for abelian surfaces, thereby implying that the 'isogeny volcano' algorithm to compute endomorphism rings of ordinary elliptic curves over finite fields does not have a straightforward generalization to computing endomorphism rings of abelian surfaces over finite fields.
引用
收藏
页码:495 / 528
页数:34
相关论文
共 44 条
[1]  
[Anonymous], 1985, ANN MATH STUDIES
[2]  
[Anonymous], 1983, Fundamental Principles of Mathematical Sciences
[3]  
[Anonymous], 1970, TATA I FUNDAMENTAL R
[4]  
[Anonymous], 1987, GRADUATE TEXTS MATH
[5]  
BACH E, 1990, MATH COMPUT, V55, P355, DOI 10.1090/S0025-5718-1990-1023756-8
[6]   COMPACTIFICATION OF ARITHMETIC QUOTIENTS OF BOUNDED SYMMETRIC DOMAINS [J].
BAILY, WL ;
BOREL, A .
ANNALS OF MATHEMATICS, 1966, 84 (03) :442-&
[7]  
Belding J, 2008, LECT NOTES COMPUT SC, V5011, P282, DOI 10.1007/978-3-540-79456-1_19
[8]   Computing the endomorphism ring of an ordinary elliptic curve over a finite field [J].
Bisson, Gaetan ;
Sutherland, Andrew V. .
JOURNAL OF NUMBER THEORY, 2011, 131 (05) :815-831
[9]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[10]  
Bost Jean-Benoit, 1988, Gaz. Math., V38, P36