Deconvolution of seismic data using adaptive Gaussian mixtures

被引:18
作者
Santamaría, I [1 ]
Pantaleón, CJ
Ibáñez, J
Artés, A
机构
[1] Univ Cantabria, DICOM, ETSII & Telecommun, Santander 39005, Spain
[2] UPM, ETSI Telecomun, DSSR, Madrid 28040, Spain
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 1999年 / 37卷 / 02期
关键词
deconvolution; estimation; iterative methods; seismology;
D O I
10.1109/36.752203
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Based on a Gaussian mixture model for the reflectivity sequence, ne present a new technique for blind deconvolution of seismic data. The method obtains a deconvolution filter that maximizes at its output a measure of the relative entropy between the proposed Gaussian mixture and a pure Gaussian distribution. A new updating procedure for the mixture parameters is included in the algorithm: it allows us to apply the algorithm without any prior knowledge about the signal and noise. A simulation example illustrates the performance of the proposed method.
引用
收藏
页码:855 / 859
页数:5
相关论文
共 7 条
[1]   Unsupervised deconvolution of sparse spike trains using stochastic approximation [J].
Champagnat, F ;
Goussard, Y ;
Idier, J .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (12) :2988-2998
[2]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[3]  
DONOHO D, 1981, APPLIED TIME SERIES, V2, P556
[4]   ZERO MEMORY NON-LINEAR DECONVOLUTION [J].
GODFREY, R ;
ROCCA, F .
GEOPHYSICAL PROSPECTING, 1981, 29 (02) :189-228
[5]  
HAYKIN S, 1994, BLIND DECONVOLUTION
[6]  
Mendel JM, 1990, MAXIMUM LIKELIHOOD D
[7]   Sparse deconvolution using adaptive mixed-Gaussian models [J].
SantamariaCaballero, I ;
PantaleonPrieto, CJ ;
ArtesRodriguez, A .
SIGNAL PROCESSING, 1996, 54 (02) :161-172