On the minimum size of binary codes with length 2R+4 and covering radius R

被引:0
作者
Keri, Gerzson [1 ]
Oestergard, Patric R. J. [2 ]
机构
[1] Hungarian Acad Sci, Comp & Automat Res Inst, H-1111 Budapest, Hungary
[2] Aalto Univ, Dept Elect & Commun Engn, Helsinki 02015, Finland
基金
芬兰科学院; 匈牙利科学研究基金会;
关键词
bounds on codes; classification; covering code; covering radius;
D O I
10.1007/s10623-007-9156-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The minimum size of a binary code with length n and covering radius R is denoted by K(n, R). For arbitrary R, the value of K(n, R) is known when n <= 2R + 3, and the corresponding optimal codes have been classified up to equivalence. By combining combinatorial and computational methods, several results for the first open case, K(2R + 4, R), are here obtained, including a proof that K(10, 3) = 12 with 11481 inequivalent optimal codes and a proof that if K(2R + 4, R) < 12 for some R then this inequality cannot be established by the existence of a corresponding self-complementary code.
引用
收藏
页码:165 / 169
页数:5
相关论文
共 15 条
[1]   An updated table of binary/ternary mixed covering codes [J].
Bertolo, R ;
Östergård, PRJ ;
Weakley, WD .
JOURNAL OF COMBINATORIAL DESIGNS, 2004, 12 (03) :157-176
[2]  
Blass U, 1999, ARS COMBINATORIA, V52, P309
[3]  
Bollobas B., 1973, Journal of Combinatorial Theory, Series A, V15, P363, DOI 10.1016/0097-3165(73)90086-1
[4]  
Brace A., 1972, COMBINATORICA, P18
[5]  
Cohen G, 1997, COVERING CODES
[6]   FURTHER RESULTS ON THE COVERING RADIUS OF CODES [J].
COHEN, GD ;
LOBSTEIN, AC ;
SLOANE, NJA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1986, 32 (05) :680-694
[7]   New lower bounds for covering codes [J].
Habsieger, L ;
Plagne, A .
DISCRETE MATHEMATICS, 2000, 222 (1-3) :125-149
[8]  
Kaski P., 2006, Classification Algorithms for Codes and Designs
[9]  
Katona G.O.H., 1973, Period. Math. Hung, V3, P19, DOI DOI 10.1007/BF02018457
[10]   Further results on the covering radius of small codes [J].
Keri, Gerzson ;
Ostergard, Patric R. J. .
DISCRETE MATHEMATICS, 2007, 307 (01) :69-77