Quartz: Superoptimization of Quantum Circuits

被引:23
作者
Xu, Mingkuan [1 ]
Li, Zikun [2 ]
Padon, Oded [3 ]
Lin, Sina [4 ]
Pointing, Jessica [5 ]
Hirth, Auguste [2 ]
Ma, Henry [2 ]
Palsberg, Jens [2 ]
Aiken, Alex [6 ]
Acar, Umut A. [1 ]
Jia, Zhihao [1 ]
机构
[1] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[2] Univ Calif Los Angeles, Los Angeles, CA USA
[3] VMware Res, Palo Alto, CA USA
[4] Microsoft, Mountain View, CA USA
[5] Univ Oxford, Oxford, England
[6] Stanford Univ, Stanford, CA 94305 USA
来源
PROCEEDINGS OF THE 43RD ACM SIGPLAN INTERNATIONAL CONFERENCE ON PROGRAMMING LANGUAGE DESIGN AND IMPLEMENTATION (PLDI '22) | 2022年
基金
美国国家科学基金会;
关键词
quantum computing; superoptimization;
D O I
10.1145/3519939.3523433
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Existing quantum compilers optimize quantum circuits by applying circuit transformations designed by experts. This approach requires significant manual effort to design and implement circuit transformations for different quantum devices, which use different gate sets, and can miss optimizations that are hard to find manually. We propose Quartz, a quantum circuit superoptimizer that automatically generates and verifies circuit transformations for arbitrary quantum gate sets. For a given gate set, Quartz generates candidate circuit transformations by systematically exploring small circuits and verifies the discovered transformations using an automated theorem prover. To optimize a quantum circuit, Quartz uses a cost-based backtracking search that applies the verified transformations to the circuit. Our evaluation on three popular gate sets shows that Quartz can effectively generate and verify transformations for different gate sets. The generated transformations cover manually designed transformations used by existing optimizers and also include new transformations. Quartz is therefore able to optimize a broad range of circuits for diverse gate sets, outperforming or matching the performance of hand-tuned circuit optimizers.
引用
收藏
页码:625 / 640
页数:16
相关论文
共 50 条
  • [31] Equivalence Checking of Sequential Quantum Circuits
    Wang, Qisheng
    Li, Riling
    Ying, Mingsheng
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2022, 41 (09) : 3143 - 3156
  • [32] Advanced Equivalence Checking for Quantum Circuits
    Burgholzer, Lukas
    Wille, Robert
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2021, 40 (09) : 1810 - 1824
  • [33] Quantum Computing: Circuits, Algorithms, and Applications
    Shafique, Muhammad Ali
    Munir, Arslan
    Latif, Imran
    IEEE ACCESS, 2024, 12 : 22296 - 22314
  • [34] Pseudo-dimension of quantum circuits
    Matthias C. Caro
    Ishaun Datta
    Quantum Machine Intelligence, 2020, 2
  • [35] Characterizing the Reproducibility of Noisy Quantum Circuits
    Dasgupta, Samudra
    Humble, Travis S.
    ENTROPY, 2022, 24 (02)
  • [36] Simulating Quantum Circuits by Model Counting
    Mei, Jingyi
    Bonsangue, Marcello
    Laarman, Alfons
    COMPUTER AIDED VERIFICATION, PT III, CAV 2024, 2024, 14683 : 555 - 578
  • [37] Partial Equivalence Checking of Quantum Circuits
    Chen, Tian-Fu
    Jiang, Jie-Hong R.
    Hsieh, Min-Hsiu
    2022 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2022), 2022, : 594 - 604
  • [38] Pseudo-dimension of quantum circuits
    Caro, Matthias C.
    Datta, Ishaun
    QUANTUM MACHINE INTELLIGENCE, 2020, 2 (02)
  • [39] Lowering the cost of quantum comparator circuits
    Donaire, Laura M.
    Ortega, Gloria
    Garzon, Ester M.
    Orts, Francisco
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (10) : 13900 - 13917
  • [40] Integrated solid circuits for quantum computing
    Matsueda, H
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2001, 29 (01) : 107 - 118