Quartz: Superoptimization of Quantum Circuits

被引:23
|
作者
Xu, Mingkuan [1 ]
Li, Zikun [2 ]
Padon, Oded [3 ]
Lin, Sina [4 ]
Pointing, Jessica [5 ]
Hirth, Auguste [2 ]
Ma, Henry [2 ]
Palsberg, Jens [2 ]
Aiken, Alex [6 ]
Acar, Umut A. [1 ]
Jia, Zhihao [1 ]
机构
[1] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[2] Univ Calif Los Angeles, Los Angeles, CA USA
[3] VMware Res, Palo Alto, CA USA
[4] Microsoft, Mountain View, CA USA
[5] Univ Oxford, Oxford, England
[6] Stanford Univ, Stanford, CA 94305 USA
来源
PROCEEDINGS OF THE 43RD ACM SIGPLAN INTERNATIONAL CONFERENCE ON PROGRAMMING LANGUAGE DESIGN AND IMPLEMENTATION (PLDI '22) | 2022年
基金
美国国家科学基金会;
关键词
quantum computing; superoptimization;
D O I
10.1145/3519939.3523433
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Existing quantum compilers optimize quantum circuits by applying circuit transformations designed by experts. This approach requires significant manual effort to design and implement circuit transformations for different quantum devices, which use different gate sets, and can miss optimizations that are hard to find manually. We propose Quartz, a quantum circuit superoptimizer that automatically generates and verifies circuit transformations for arbitrary quantum gate sets. For a given gate set, Quartz generates candidate circuit transformations by systematically exploring small circuits and verifies the discovered transformations using an automated theorem prover. To optimize a quantum circuit, Quartz uses a cost-based backtracking search that applies the verified transformations to the circuit. Our evaluation on three popular gate sets shows that Quartz can effectively generate and verify transformations for different gate sets. The generated transformations cover manually designed transformations used by existing optimizers and also include new transformations. Quartz is therefore able to optimize a broad range of circuits for diverse gate sets, outperforming or matching the performance of hand-tuned circuit optimizers.
引用
收藏
页码:625 / 640
页数:16
相关论文
共 50 条
  • [1] Scaling up Superoptimization
    Phothilimthana, Phitchaya Mangpo
    Thakur, Aditya
    Bodik, Rastislav
    Dhurjati, Dinakar
    ACM SIGPLAN NOTICES, 2016, 51 (04) : 297 - 310
  • [2] Conditionally Correct Superoptimization
    Sharma, Rahul
    Schkufza, Eric
    Churchill, Berkeley
    Aiken, Alex
    ACM SIGPLAN NOTICES, 2015, 50 (10) : 147 - 162
  • [3] Unbounded Superoptimization
    Jangda, Abhinav
    Yorsh, Greta
    PROCEEDINGS OF THE 2017 ACM SIGPLAN INTERNATIONAL SYMPOSIUM ON NEW IDEAS, NEW PARADIGMS, AND REFLECTIONS ON PROGRAMMING AND SOFTWARE (ONWARD!'17), 2017, : 78 - 88
  • [4] Scaling up superoptimization
    Phothilimthana P.M.
    Thakur A.
    Bodik R.
    Dhurjati D.
    1600, Association for Computing Machinery (51): : 297 - 310
  • [5] Stochastic Superoptimization
    Schkufza, Eric
    Sharma, Rahul
    Aiken, Alex
    ACM SIGPLAN NOTICES, 2013, 48 (04) : 305 - 315
  • [6] Superoptimization of Memory Subsystems
    Wingbermuehle, Joseph G.
    Cytron, Ron K.
    Chamberlain, Roger D.
    ACM SIGPLAN NOTICES, 2014, 49 (05) : 145 - 154
  • [7] Learning Guided Enumerative Synthesis for Superoptimization
    Singh, Shikhar
    Zhang, Mengshi
    Khurshid, Sarfraz
    MODEL CHECKING SOFTWARE, SPIN 2019, 2019, 11636 : 172 - 192
  • [8] Dataflow-Based Pruning for Speeding up Superoptimization
    Mukherjee, Manasij
    Kant, Pranav
    Liu, Zhengyang
    Regehr, John
    PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL, 2020, 4 (OOPSLA):
  • [9] Sparse Quantum Codes From Quantum Circuits
    Bacon, Dave
    Flammia, Steven T.
    Harrow, Aram W.
    Shi, Jonathan
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (04) : 2464 - 2479
  • [10] Modelling Quantum Circuits with UML
    Perez-Castillo, Ricardo
    Jimenez-Navajas, Luis
    Piattini, Mario
    2021 IEEE/ACM 2ND INTERNATIONAL WORKSHOP ON QUANTUM SOFTWARE ENGINEERING (Q-SE 2021), 2021, : 7 - 12