Atlases of cognition with large-scale human brain mapping

被引:42
|
作者
Varoquaux, Gael [1 ,2 ,3 ,9 ]
Schwartz, Yannick [1 ,2 ,3 ]
Poldrack, Russell A. [4 ]
Gauthier, Baptiste [2 ,5 ]
Bzdok, Danilo [1 ,2 ,6 ,7 ]
Poline, Jean-Baptiste [8 ]
Thirion, Bertrand [1 ,2 ,3 ]
机构
[1] INRIA, Parietal, Saclay, France
[2] CEA, Neurospin, Gif Sur Yvette, France
[3] Univ Paris Saclay, STIC Dept, Saclay, France
[4] Stanford Univ, Psychol Dept, Stanford, CA 94305 USA
[5] INSERM, Cognit Neuroimaging Unit, Gif Sur Yvette, France
[6] Julich Aachen Res Alliance, JARA BRAIN, Aachen, Germany
[7] Rhein Westfal TH Aachen, Dept Psychiat Psychotherapy & Psychosomat, D-52072 Aachen, Germany
[8] McGill Univ, Montreal Neurol Inst & Hosp, Montreal, PQ, Canada
[9] CEA Saclay, Neurospin, F-91191 Gif Sur Yvette, France
基金
欧盟地平线“2020”;
关键词
HUMAN CEREBELLUM; ACTIVATION; FMRI; ONTOLOGIES; INFERENCE;
D O I
10.1371/journal.pcbi.1006565
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
To map the neural substrate of mental function, cognitive neuroimaging relies on controlled psychological manipulations that engage brain systems associated with specific cognitive processes. In order to build comprehensive atlases of cognitive function in the brain, it must assemble maps for many different cognitive processes, which often evoke overlapping patterns of activation. Such data aggregation faces contrasting goals: on the one hand finding correspondences across vastly different cognitive experiments, while on the other hand precisely describing the function of any given brain region. Here we introduce a new analysis framework that tackles these difficulties and thereby enables the generation of brain atlases for cognitive function. The approach leverages ontologies of cognitive concepts and multi-label brain decoding to map the neural substrate of these concepts. We demonstrate the approach by building an atlas of functional brain organization based on 30 diverse functional neuroimaging studies, totaling 196 different experimental conditions. Unlike conventional brain mapping, this functional atlas supports robust reverse inference: predicting the mental processes from brain activity in the regions delineated by the atlas. To establish that this reverse inference is indeed governed by the corresponding concepts, and not idiosyncrasies of experimental designs, we show that it can accurately decode the cognitive concepts recruited in new tasks. These results demonstrate that aggregating independent task-fMRI studies can provide a more precise global atlas of selective associations between brain and cognition.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Identifying Large-Scale Brain Networks in Fragile X Syndrome
    Hall, Scott S.
    Jiang, Heidi
    Reiss, Allan L.
    Greicius, Michael D.
    JAMA PSYCHIATRY, 2013, 70 (11) : 1215 - 1223
  • [22] Fear extinction learning modulates large-scale brain connectivity
    Wen, Zhenfu
    Chen, Zhe Sage
    Milad, Mohammed R.
    NEUROIMAGE, 2021, 238
  • [23] Large-scale three-dimensional Gaussian process extinction mapping
    Sale, S. E.
    Magorrian, J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 481 (01) : 494 - 508
  • [24] A large-scale fMRI dataset for human action recognition
    Zhou, Ming
    Gong, Zhengxin
    Dai, Yuxuan
    Wen, Yushan
    Liu, Youyi
    Zhen, Zonglei
    SCIENTIFIC DATA, 2023, 10 (01)
  • [25] Large-scale cortical displacement of a human retinotopic map
    Slotnick, SD
    Moo, LR
    Krauss, G
    Hart, J
    NEUROREPORT, 2002, 13 (01) : 41 - 46
  • [26] Defining face perception areas in the human brain: A large-scale factorial fMRI face localizer analysis
    Rossion, Bruno
    Hanseeuw, Bernard
    Dricot, Laurence
    BRAIN AND COGNITION, 2012, 79 (02) : 138 - 157
  • [27] NMDA receptor function in large-scale anticorrelated neural systems with implications for cognition and schizophrenia
    Anticevic, Alan
    Gancsos, Mark
    Murray, John D.
    Repovs, Grega
    Driesen, Naomi R.
    Ennis, Debra J.
    Niciu, Mark J.
    Morgan, Peter T.
    Surti, Toral S.
    Bloch, Michael H.
    Ramani, Ramachandran
    Smith, Mark A.
    Wang, Xiao-Jing
    Krystal, John H.
    Corlett, Philip R.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (41) : 16720 - 16725
  • [28] Large-scale brain networks emerge from dynamic processing of musical timbre, key and rhythm
    Alluri, Vinoo
    Toiviainen, Petri
    Jaaskelainen, Iiro P.
    Glerean, Enrico
    Sams, Mikko
    Brattico, Elvira
    NEUROIMAGE, 2012, 59 (04) : 3677 - 3689
  • [29] Intranasal Oxytocin Selectively Modulates Large-Scale Brain Networks in Humans
    Brodmann, Katja
    Gruber, Oliver
    Goya-Maldonado, Roberto
    BRAIN CONNECTIVITY, 2017, 7 (07) : 454 - 463
  • [30] Motor Learning Improves the Stability of Large-Scale Brain Connectivity Pattern
    Yu, Mengxia
    Song, Haoming
    Huang, Jialin
    Song, Yiying
    Liu, Jia
    FRONTIERS IN HUMAN NEUROSCIENCE, 2020, 14