Low-cost variable stiffness joint design using translational variable radius pulleys

被引:22
|
作者
Yigit, Cihat Bora [1 ]
Bayraktar, Ertugrul [2 ]
Boyraz, Pinar [3 ]
机构
[1] Siemens AS, Digital Factory Div, Mot Control, Machine Tool Syst, Istanbul, Turkey
[2] Duzce Univ, Fac Engn, Dept Mechatron Engn, TR-81620 Duzce, Turkey
[3] Chalmers Univ Technol, Mech & Maritime Sci Dept, S-41296 Gothenburg, Sweden
关键词
Variable stiffness joint; Mechanism synthesizing; Nonlinear optimization; Translational variable radius pulley; ACTUATOR; ROBOT; MECHANISM; IMPLEMENTATION; SPRINGS; VSA;
D O I
10.1016/j.mechmachtheory.2018.08.006
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Robot joints are expected to be safe, compliant, compact, simple and low-cost. Gravity compensation, zero backlash, energy efficiency and stiffness adjustability are some desired features in the robotic joints. The variable radius pulleys (VRPs) provide a simple, compact and low-cost solution to the stiffness adjustment problem. VRP mechanisms maintain a preconfigured nonlinear force-elongation curve utilizing off-the-shelf torsional spring and pulley profile. In this paper, three synthesis algorithms are presented for VRP mechanisms to obtain desired force-elongation curve. In addition, a feasibility condition is proposed to determine the torsional spring coefficient. Using the synthesis methods and the feasibility condition, a variable stiffness mechanism is designed and manufactured which uses two VRPs in an antagonistic cable driven structure. Afterwards, the outputs of three synthesis methods are compared to force-elongation characteristics in the tensile testing experiment. A custom testbed is manufactured to measure the pulley rotation, cable elongation and tensile force at the same time. Using the experiment as the baseline, the best algorithm achieved to reproduce the desired curve with a root-mean-square (RMS) error of 13.3%. Furthermore, VRP-VSJ is implemented with a linear controller to reveal the performance of the mechanism in terms of position accuracy and stiffness adjustability. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:203 / 219
页数:17
相关论文
共 50 条
  • [1] A New Design of a Variable Stiffness Joint
    Zhu, Hongxi
    Thomas, Ulrike
    2019 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2019, : 223 - 228
  • [2] Design of an electromagnetic prismatic joint with variable stiffness
    Zhao, Yong
    Yu, Jue
    Wang, Hao
    Chen, Genliang
    Lai, Xinmin
    INDUSTRIAL ROBOT-AN INTERNATIONAL JOURNAL, 2017, 44 (02) : 222 - 230
  • [3] Design and Analysis of a Novel Variable Stiffness Joint for Robot
    Jin, Hui
    Luo, Mulin
    Lu, Shiqing
    He, Qingsong
    Lin, Yuanchang
    ACTUATORS, 2023, 12 (01)
  • [4] Study on the stiffness property of a variable stiffness joint using a leaf spring
    Fang, Lijin
    Wang, Yan
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2019, 233 (03) : 1021 - 1031
  • [5] Design of a Series Variable Stiffness Joint Based on Antagonistic Principle
    Cui, Shipeng
    Liu, Yiwei
    Sun, Yongjun
    Liu, Hong
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2017, PT II, 2017, 10463 : 238 - 249
  • [6] Variable Stiffness Spring Actuators for Low-Energy-Cost Human Augmentation
    Braun, David J.
    Chalvet, Vincent
    Chong, Tze-Hao
    Apte, Salil S.
    Hogan, Neville
    IEEE TRANSACTIONS ON ROBOTICS, 2019, 35 (06) : 1435 - 1449
  • [7] Design, Dynamics Analysis, and Real-Time Stiffness Control of a Variable Stiffness Joint
    Yu, Yang
    Wei, Shimin
    Ji, Qiunan
    Yang, Zheng
    ELECTRONICS, 2020, 9 (06) : 1 - 22
  • [8] Design and Modeling of a New Variable Stiffness Robot Joint
    Tao, Yong
    Wang, Tianmiao
    Wang, Yunqing
    Guo, Long
    Xiong, Hegen
    Chen, Fang
    PROCESSING OF 2014 INTERNATIONAL CONFERENCE ON MULTISENSOR FUSION AND INFORMATION INTEGRATION FOR INTELLIGENT SYSTEMS (MFI), 2014,
  • [9] Design, modeling, and control of a variable stiffness elbow joint
    Baggetta, Mario
    Berselli, Giovanni
    Palli, Gianluca
    Melchiorri, Claudio
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 122 (11-12) : 4437 - 4451
  • [10] Design and Analysis of a Novel Variable Stiffness Joint for Robot
    Zhang, Xiang
    Capehart, Twan
    Moore, Carl A.
    2018 5TH INTERNATIONAL CONFERENCE ON MECHANICAL, MATERIALS AND MANUFACTURING (ICMMM 2018), 2018, 249