Atomic-Scale Phase Composition through Multivariate Statistical Analysis of Atom Probe Tomography Data

被引:9
作者
Keenan, Michael R.
Smentkowski, Vincent S. [1 ]
Ulfig, Robert M. [2 ]
Oltman, Edward [2 ]
Larson, David J. [2 ]
Kelly, Thomas F. [2 ]
机构
[1] Gen Elect Global Res Ctr, Niskayuna, NY 12309 USA
[2] CAMECA Instruments Inc, Madison, WI 53711 USA
关键词
atom probe tomography (APT); multivariate statistical analysis (MVSA); PCA;
D O I
10.1017/S1431927611000353
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We demonstrate for the first time that multivariate statistical analysis techniques can be applied to atom probe tomography data to estimate the chemical composition of a sample at the full spatial resolution of the atom probe in three dimensions. Whereas the raw atom probe data provide the specific identity of an atom at a precise location, the multivariate results can be interpreted in terms of the probabilities that an atom representing a particular chemical phase is situated there. When aggregated to the size scale of a single atom (similar to 0.2 nm), atom probe spectral-image datasets are huge and extremely sparse. In fact, the average spectrum will have somewhat less than one total count per spectrum due to imperfect detection efficiency. These conditions, under which the variance in the data is completely dominated by counting noise, test the limits of multivariate analysis, and an extensive discussion of how to extract the chemical information is presented. Efficient numerical approaches to performing principal component analysis (PCA) on these datasets, which may number hundreds of millions of individual spectra, are put forward, and it is shown that PCA can be computed in a few seconds on a typical laptop computer.
引用
收藏
页码:418 / 430
页数:13
相关论文
共 20 条
[1]  
Barrett C.S., 1980, STRUCTURE METALS
[2]  
Davis T. A., 2006, DIRECT METHODS SPARS
[3]   Spatial Resolution in Atom Probe Tomography [J].
Gault, Baptiste ;
Moody, Michael P. ;
De Geuser, Frederic ;
La Fontaine, Alex ;
Stephenson, Leigh T. ;
Haley, Daniel ;
Ringer, Simon P. .
MICROSCOPY AND MICROANALYSIS, 2010, 16 (01) :99-110
[4]  
Golub G. H., 1996, MATRIX COMPUTATIONS
[5]  
Jollife Ian T, 2002, Principal Component Analysis
[6]  
Keenan M.R., 2007, Proceedings of Techniques and Applications of Hyperspectral Image Analysis, P89
[7]   Exploiting spatial-domain simplicity in spectral image analysis [J].
Keenan, Michael R. .
SURFACE AND INTERFACE ANALYSIS, 2009, 41 (02) :79-87
[8]   Accounting for Poisson noise in the multivariate analysis of ToF-SIMS spectrum images [J].
Keenan, MR ;
Kotula, PG .
SURFACE AND INTERFACE ANALYSIS, 2004, 36 (03) :203-212
[9]   Invited review article: Atom probe tomography [J].
Kelly, Thomas F. ;
Miller, Michael K. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2007, 78 (03)
[10]   Tomographic spectral Imaging with multivariate statistical analysis: Comprehensive 3D microanalysis [J].
Kotula, PG ;
Keenan, MR ;
Michael, JR .
MICROSCOPY AND MICROANALYSIS, 2006, 12 (01) :36-48