Cross-Node Federated Graph Neural Network for Spatio-Temporal Data Modeling

被引:65
|
作者
Meng, Chuizheng [1 ]
Rambhatla, Sirisha [1 ]
Liu, Yan [1 ]
机构
[1] Univ Southern Calif, Los Angeles, CA 90007 USA
关键词
Federated Learning; Graph Neural Network; Spatio-Temporal Data Modeling;
D O I
10.1145/3447548.3467371
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model - Cross-Node Federated Graph Neural Network (CNFGNN) - which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.
引用
收藏
页码:1202 / 1211
页数:10
相关论文
共 50 条
  • [21] Graph Neural Processes for Spatio-Temporal Extrapolation
    Hu, Junfeng
    Liang, Yuxuan
    Fan, Zhencheng
    Chen, Hongyang
    Zheng, Yu
    Zimmermann, Roger
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 752 - 763
  • [22] Dynamic adaptive spatio-temporal graph neural network for multi-node offshore wind speed forecasting
    Gao, Ziheng
    Li, Zhuolin
    Xu, Lingyu
    Yu, Jie
    APPLIED SOFT COMPUTING, 2023, 141
  • [23] Spatio-temporal communication network traffic prediction method based on graph neural network
    Qin, Liang
    Gu, Huaxi
    Wei, Wenting
    Xiao, Zhe
    Lin, Zexu
    Liu, Lu
    Wang, Ning
    INFORMATION SCIENCES, 2024, 679
  • [24] Condition monitoring of wind turbines with the implementation of spatio-temporal graph neural network
    Liu, Jiayang
    Wang, Xiaosun
    Xie, Fuqi
    Wu, Shijing
    Li, Deng
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 121
  • [25] A Hierarchical Spatio-Temporal Graph Convolutional Neural Network for Anomaly Detection in Videos
    Zeng, Xianlin
    Jiang, Yalong
    Ding, Wenrui
    Li, Hongguang
    Hao, Yafeng
    Qiu, Zifeng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (01) : 200 - 212
  • [26] SPATIO-TEMPORAL GRAPH-TCN NEURAL NETWORK FOR TRAFFIC FLOW PREDICTION
    Ren, Hongjin
    Kang, Jinbiao
    Zhang, Ke
    2022 19TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2022,
  • [27] COOL: A Conjoint Perspective on Spatio-Temporal Graph Neural Network for Traffic Forecasting
    Ju, Wei
    Zhao, Yusheng
    Qin, Yifang
    Yi, Siyu
    Yuan, Jingyang
    Xiao, Zhiping
    Luo, Xiao
    Yan, Xiting
    Zhang, Ming
    INFORMATION FUSION, 2024, 107
  • [28] Spatio-Temporal Graph-TCN Neural Network for Traffic Flow Prediction
    Ren, Hongjin
    Kang, Jinbiao
    Zhang, Ke
    2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing, ICCWAMTIP 2022, 2022,
  • [29] MGCN: Dynamic Spatio-Temporal Multi-Graph Convolutional Neural Network
    Hu, Jia
    Lin, Xianghong
    Wang, Chu
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [30] Deep spatio-temporal residual neural networks for road-network-based data modeling
    Ren, Yibin
    Cheng, Tao
    Zhang, Yang
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2019, 33 (09) : 1894 - 1912