Least Central Subtrees, Center, and Centroid of a Tree

被引:5
作者
Hamina, Martti [1 ]
Peltola, Matti [1 ]
机构
[1] Univ Oulu, Fac Technol, Div Math, Oulu 90014, Finland
关键词
center; centroid; tree eccentricity; joinsemilattice of subtrees; least central subtree; NETWORK;
D O I
10.1002/net.20402
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we consider the joinsemilattice of subtrees of the tree. The minimal subtrees in the joinsemilattice center are least central subtrees. We show that for every tree any least central subtree contains every point of the center and at least one point of the centroid of the tree. (C) 2010 Wiley Periodicals, Inc. NETWORKS, Vol. 57(4), 328-332 2011
引用
收藏
页码:328 / 332
页数:5
相关论文
共 17 条
[1]  
[Anonymous], 1961, Proc. Am. Math. Soc.
[2]  
[Anonymous], 1990, Distance in Graphs
[3]  
[Anonymous], 1869, Journal f ur die reine und angewandte Mathematik, DOI DOI 10.1515/CRLL.1869.70.185
[4]   OPTIMUM LOCATIONS OF SWITCHING CENTERS + ABSOLUTE CENTERS + MEDIANS OF GRAPH [J].
HAKIMI, SL .
OPERATIONS RESEARCH, 1964, 12 (03) :450-&
[5]  
MCMORRIS F, 1997, C NUM, V124, P139
[6]   THE OPTIMAL LOCATION OF A PATH OR TREE IN A TREE NETWORK [J].
MINIEKA, E .
NETWORKS, 1985, 15 (03) :309-321
[7]  
Mulder H.M, 1980, Mathematical Centre Tracts, V132
[8]  
MULDER HM, 2006, GEN CENTRALITY TREES
[9]  
Nebesky L., 1971, Comment. Math. Univ. Carol., V12, P317
[10]  
Nieminen J, 1999, NETWORKS, V34, P272, DOI 10.1002/(SICI)1097-0037(199912)34:4<272::AID-NET6>3.0.CO