Blow-up solutions of the general b-equation

被引:4
作者
Lv, Guangying [1 ]
Wang, Mingxin [2 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 210018, Peoples R China
[2] Harbin Inst Technol, Nat Sci Res Ctr, Harbin 150080, Peoples R China
关键词
GLOBAL CONSERVATIVE SOLUTIONS; CAMASSA-HOLM; INTEGRABLE EQUATION; WELL-POSEDNESS; WEAK SOLUTIONS; BREAKING WAVES; EXISTENCE; FAMILY;
D O I
10.1063/1.3525585
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this short paper, we consider the b-equation. A new precise blow-up scenario is described and some new results are obtained for the blow-up phenomena. (C) 2010 American Institute of Physics. [doi:10.1063/1.3525585]
引用
收藏
页数:10
相关论文
共 32 条
[1]   Global dissipative solutions of the Camassa-Holm equation [J].
Bressan, Alberto ;
Constantin, Adrian .
ANALYSIS AND APPLICATIONS, 2007, 5 (01) :1-27
[2]   Global conservative solutions of the Camassa-Holm equation [J].
Bressan, Alberto ;
Constantin, Adrian .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2007, 183 (02) :215-239
[3]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[4]  
Constantin A, 1998, COMMUN PUR APPL MATH, V51, P475, DOI 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO
[5]  
2-5
[6]   Wave breaking for nonlinear nonlocal shallow water equations [J].
Constantin, A ;
Escher, J .
ACTA MATHEMATICA, 1998, 181 (02) :229-243
[7]   Global weak solutions for a shallow water equation [J].
Constantin, A ;
Molinet, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 211 (01) :45-61
[8]  
Constantin A, 1998, INDIANA U MATH J, V47, P1527
[9]   On the blow-up rate and the blow-up set of breaking waves for a shallow water equation [J].
Constantin, A ;
Escher, J .
MATHEMATISCHE ZEITSCHRIFT, 2000, 233 (01) :75-91
[10]   Existence of permanent and breaking waves for a shallow water equation: A geometric approach [J].
Constantin, A .
ANNALES DE L INSTITUT FOURIER, 2000, 50 (02) :321-+