Rigidity of generalized Bach-flat vacuum static spaces

被引:2
作者
Yun, Gabjin [1 ]
Hwang, Seungsu [2 ]
机构
[1] Myong Ji Univ, Dept Math, 116 Myongji Ro, Yongin 17058, Gyeonggi, South Korea
[2] Chung Ang Univ, Dept Math, 84 HeukSeok Ro, Seoul 06974, South Korea
基金
新加坡国家研究基金会;
关键词
Vacuum static space; B-t-flat; F-t-flat; Besse conjecture; Einstein metrics; SCALAR CURVATURE; DIFFERENTIAL-EQUATION; METRICS;
D O I
10.1016/j.geomphys.2017.07.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the structure of generalized Bach-flat vacuum static spaces. Generalized Bach-flat metrics are considered as extensions of both Einstein and Bach-flat metrics. First, we prove that a compact Riemannian n-manifold with n >= 4 which is a generalized Bach-flat vacuum static space is Einstein. A generalized Bach-flat vacuum static space with the potential function f having compact level sets is either Ricci-flat or a warped product with zero scalar curvature when n >= 5, and when n = 4, it is Einstein iff has its minimum. Secondly, we consider critical metrics for another quadratic curvature functional involving the Ricci tensor, and prove similar results. Lastly, by applying the technique developed above, we prove Besse conjecture when the manifold is generalized Bach-flat. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:195 / 205
页数:11
相关论文
共 14 条
[1]  
[Anonymous], 1975, LARGE SCALE STRUCTUR
[2]  
Besse A.L., 1987, ERGEBNISSE MATH IHRE, V10
[3]  
Bleecker D.D., 1979, Journal of Differential Geometry, V14, P599, DOI DOI 10.4310/JDG/1214435240
[4]  
BOURGUIGNON JP, 1975, COMPOS MATH, V30, P1
[5]   MANIFOLDS OF RIEMANNIAN METRICS WITH PRESCRIBED SCALAR CURVATURE [J].
FISCHER, AE ;
MARSDEN, JE .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 80 (03) :479-484
[6]   Critical metrics on connected sums of Einstein four-manifolds [J].
Gursky, Matthew J. ;
Viaclovsky, Jeff A. .
ADVANCES IN MATHEMATICS, 2016, 292 :210-315
[7]   Rigidity and stability of Einstein metrics for quadratic curvature functionals [J].
Gursky, Matthew J. ;
Viaclovsky, Jeff A. .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 700 :37-91
[8]   A DIFFERENTIAL-EQUATION ARISING FROM SCALAR CURVATURE FUNCTION [J].
KOBAYASHI, O .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1982, 34 (04) :665-675
[9]  
Kobayashi O., 1981, PROGR MATH, V14, P197
[10]  
LAFONTAINE J, 1983, J MATH PURE APPL, V62, P63