SCHRODINGER-KIRCHHOFF-HARDY p-RACTIONAL EQUATIONS WITHOUT THE AMBROSETTI-RABINOWITZ CONDITION

被引:10
作者
Fiscella, Alessio [1 ]
机构
[1] Univ Estadual Campinas, Dept Matemat, IMECC, Rua Sergio Buarque de Holanda 651, BR-13083859 Campinas, SP, Brazil
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2020年 / 13卷 / 07期
基金
巴西圣保罗研究基金会;
关键词
Schrodinger-Kirchhoff equations; existence of entire solutions; fractional p-Laplacian operator; Hardy coefficients; variational methods; NONTRIVIAL SOLUTIONS; EXISTENCE THEOREMS; MULTIPLICITY; LAPLACIAN; SYSTEMS;
D O I
10.3934/dcdss.2020154
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the study of the following Schrodinger-Kirchhoff-Hardy equation in R-n M(integral integral(R2n) vertical bar u(x) - u(y)vertical bar(p)/vertical bar x - y vertical bar(n) vertical bar ps dxdy) (-Delta)(p)(s)u + V(x)vertical bar u vertical bar(p-2) u-u vertical bar u vertical bar(p-2)u/vertical bar x vertical bar p(s) = f(x, u), where (-Delta)(p)(s) is the fractional p-Laplacian, with s is an element of (0, 1) and p > 1, dimension n > ps, M models a Kirchhoff coefficient, V is a positive potential, f is a continuous nonlinearity and mu is a real parameter. The main feature of the paper is the combination of a Kirchhoff coefficient and a Hardy term with a suitable function f which does not necessarily satisfy the Ambrosetti-Rabinowitz condition. Under different assumptions for f and restrictions for mu, we provide existence and multiplicity results by variational methods.
引用
收藏
页码:1993 / 2007
页数:15
相关论文
共 43 条
[31]   The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of p-Laplacian type without the Ambrosetti-Rabinowitz condition [J].
Li, Gongbao ;
Yang, Caiyun .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (12) :4602-4613
[32]   ENTIRE SOLUTIONS FOR CRITICAL p-FRACTIONAL HARDY SCHRODINGER KIRCHHOFF EQUATIONS [J].
Piersanti, Paolo ;
Pucci, Patrizha .
PUBLICACIONS MATEMATIQUES, 2018, 62 (01) :3-36
[33]   Schrodinger-Hardy system without Ambrosetti-Rambinowitz condition on Carnot groups [J].
Chen, Wenjing ;
Yu, Fang .
ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2024, (23) :1-21
[34]   Ground state solution to N-Kirchhoff equation with critical exponential growth and without Ambrosetti–Rabinowitz condition [J].
Shilpa Gupta ;
Gaurav Dwivedi .
Rendiconti del Circolo Matematico di Palermo Series 2, 2024, 73 :45-56
[35]   Nonlocal τ(m)-Laplacian-like problem with logarithmic nonlinearity and without Ambrosetti-Rabinowitz condition on compact Riemannian manifolds [J].
Bouaam, Hind ;
El Ouaarabi, Mohamed ;
Allalou, Chakir ;
Melliani, Said .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (07) :6097-6116
[36]   A class of p1(x, .) & p2(x, .)-fractional Kirchhoff-type problem with variable s(x, .)-order and without the Ambrosetti-Rabinowitz condition in Double-struck capital RN [J].
Bu, Weichun ;
An, Tianqing ;
Zuo, Jiabin .
OPEN MATHEMATICS, 2022, 20 (01) :267-290
[37]   Existence and Hölder regularity of infinitely many solutions to a p-Kirchhoff-type problem involving a singular nonlinearity without the Ambrosetti–Rabinowitz (AR) condition [J].
Debajyoti Choudhuri .
Zeitschrift für angewandte Mathematik und Physik, 2021, 72
[38]   Multiplicity and concentration behavior of positive solutions for a quasilinear problem in Orlicz-Sobolev spaces without Ambrosetti-Rabinowitz condition via penalization method [J].
Ait-Mahiout, K. .
JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2020, 6 (02) :473-506
[39]   The positive solutions to a quasi-linear problem of fractional p-Laplacian type without the Ambrosetti–Rabinowitz condition [J].
Bin Ge ;
Ying-Xin Cui ;
Liang-Liang Sun ;
Massimiliano Ferrara .
Positivity, 2018, 22 :873-895
[40]   Existence andmultiplicity of solutions for Kirchhoff type equations involving fractional p-Laplacian without compact condition [J].
Zhang, Youpei ;
Tang, Xianhua ;
Zhang, Jian .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (04) :3147-3167