SCHRODINGER-KIRCHHOFF-HARDY p-RACTIONAL EQUATIONS WITHOUT THE AMBROSETTI-RABINOWITZ CONDITION

被引:10
作者
Fiscella, Alessio [1 ]
机构
[1] Univ Estadual Campinas, Dept Matemat, IMECC, Rua Sergio Buarque de Holanda 651, BR-13083859 Campinas, SP, Brazil
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2020年 / 13卷 / 07期
基金
巴西圣保罗研究基金会;
关键词
Schrodinger-Kirchhoff equations; existence of entire solutions; fractional p-Laplacian operator; Hardy coefficients; variational methods; NONTRIVIAL SOLUTIONS; EXISTENCE THEOREMS; MULTIPLICITY; LAPLACIAN; SYSTEMS;
D O I
10.3934/dcdss.2020154
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the study of the following Schrodinger-Kirchhoff-Hardy equation in R-n M(integral integral(R2n) vertical bar u(x) - u(y)vertical bar(p)/vertical bar x - y vertical bar(n) vertical bar ps dxdy) (-Delta)(p)(s)u + V(x)vertical bar u vertical bar(p-2) u-u vertical bar u vertical bar(p-2)u/vertical bar x vertical bar p(s) = f(x, u), where (-Delta)(p)(s) is the fractional p-Laplacian, with s is an element of (0, 1) and p > 1, dimension n > ps, M models a Kirchhoff coefficient, V is a positive potential, f is a continuous nonlinearity and mu is a real parameter. The main feature of the paper is the combination of a Kirchhoff coefficient and a Hardy term with a suitable function f which does not necessarily satisfy the Ambrosetti-Rabinowitz condition. Under different assumptions for f and restrictions for mu, we provide existence and multiplicity results by variational methods.
引用
收藏
页码:1993 / 2007
页数:15
相关论文
共 43 条
[21]   ON A CLASS OF p(x)-LAPLACIAN EQUATIONS WITHOUT ANY GROWTH AND AMBROSETTI-RABINOWITZ CONDITIONS [J].
Cao, Xiao-Feng ;
Ge, Bin ;
Zhang, Bei-Lei .
ADVANCES IN DIFFERENTIAL EQUATIONS, 2021, 26 (5-6) :259-280
[22]   On a m(x)-polyharmonic Kirchhoff problem without any growth near 0 and Ambrosetti-Rabinowitz conditions [J].
Harrabi, Abdellaziz ;
Hamdani, Mohamed Karim ;
Fiscella, Alessio .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (11) :8490-8499
[23]   Infinitely Many Solutions for p-Laplacian Equation in RN Without the Ambrosetti-Rabinowitz Condition [J].
Chen, Caisheng ;
Chen, Lijuan .
ACTA APPLICANDAE MATHEMATICAE, 2016, 144 (01) :185-195
[24]   Existence Results for a p(x)-Kirchhoff-Type Equation without Ambrosetti- Rabinowitz Condition [J].
Wang, Libo ;
Pei, Minghe .
JOURNAL OF APPLIED MATHEMATICS, 2013,
[25]   HOMOCLINIC ORBITS FOR SUPERLINEAR HAMILTONIAN SYSTEMS WITHOUT AMBROSETTI-RABINOWITZ GROWTH CONDITION [J].
Wang, Jun ;
Xu, Junxiang ;
Zhang, Fubao .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 27 (03) :1241-1257
[26]   Existence and multiplicity of solutions for Dirichlet problem of p(x)-Laplacian type without the Ambrosetti-Rabinowitz condition [J].
Chen, Sitong ;
Tang, Xianhua .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 501 (01)
[27]   The existence of solutions for an impulsive fractional coupled system of (p, q)-Laplacian type without the Ambrosetti-Rabinowitz condition [J].
Li, Dongping ;
Chen, Fangqi ;
An, Yukun .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (05) :1449-1464
[28]   Fractional double phase Robin problem involving variable order-exponents without Ambrosetti-Rabinowitz condition [J].
Biswas, Reshmi ;
Bahrouni, Sabri ;
Carvalho, Marcos L. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (03)
[29]   Ground state solution for a periodic p&q-Laplacian equation involving critical growth without the Ambrosetti-Rabinowitz condition [J].
Shen, Liejun .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (09) :10499-10511
[30]   THE EXISTENCE OF A NONTRIVIAL SOLUTION TO A NONLINEAR ELLIPTIC PROBLEM OF LINKING TYPE WITHOUT THE AMBROSETTI-RABINOWITZ CONDITION [J].
Li, Gongbao ;
Wang, Chunhua .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2011, 36 (02) :461-480