Finite-size correlation length and violations of finite-size scaling

被引:0
作者
Caracciolo, S
Gambassi, A
Gubinelli, M
Pelissetto, A
机构
[1] Scuola Normale Super Pisa, I-56100 Pisa, Italy
[2] Ist Nazl Fis Nucl, Sezione Pisa, I-56100 Pisa, Italy
[3] Univ Pisa, Dipartimento Fis, I-56100 Pisa, Italy
[4] Univ Pisa, Ist Nazl Fis Nucl, Sezione Pisa, I-56100 Pisa, Italy
[5] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[6] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sezione Roma 1, I-00185 Rome, Italy
关键词
D O I
暂无
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We address the problem of the definition of the finite-volume correlation length. First, we study the large-N limit of the N-vector model, and we show the existence of several constraints on the definition if regularity of the finite-size scaling functions and correct anomalous behaviour above the upper critical dimension are required. Then, we study in detail a model in which the zero mode is prohibited. Such. a model is a generalization of the fixed-magnetization Ising model which is equivalent to the lattice gas. Also in this case, we find that the finite-volume correlation length must satisfy appropriate constraints in order to obtain regular finite-size scaling functions, and, above the upper critical dimension, an anomalous scaling behaviour. The large-N results are confirmed by a one-loop calculation in the lattice phi (4) theory.
引用
收藏
页码:255 / 265
页数:11
相关论文
共 50 条
[21]   Disorder averaging and finite-size scaling [J].
Bernardet, K ;
Pázmándi, F ;
Batrouni, GG .
PHYSICAL REVIEW LETTERS, 2000, 84 (19) :4477-4480
[22]   Finite-size scaling of the quasispecies model [J].
Campos, PRA ;
Fontanari, JF .
PHYSICAL REVIEW E, 1998, 58 (02) :2664-2667
[23]   ORDER PARAMETER AND FINITE-SIZE SCALING [J].
TAKANO, H ;
SAITO, Y .
PROGRESS OF THEORETICAL PHYSICS, 1985, 73 (06) :1369-1376
[24]   Finite-size scaling of critical avalanches [J].
Yadav, Avinash Chand ;
Quadir, Abdul ;
Jafri, Haider Hasan .
PHYSICAL REVIEW E, 2022, 106 (01)
[25]   Finite-size scaling of the quasispecies model [J].
Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1998, 58 (2-B)
[26]   Finite-size scaling of kinetic quantities [J].
Tarasenko, AA ;
Nieto, F ;
Uebing, C .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1999, 1 (15) :3437-3440
[27]   Finite-size scaling of eigenstate thermalization [J].
Beugeling, W. ;
Moessner, R. ;
Haque, Masudul .
PHYSICAL REVIEW E, 2014, 89 (04)
[28]   FINITE-SIZE SCALING AND CRITICAL NUCLEATION [J].
MON, KK ;
JASNOW, D .
PHYSICAL REVIEW LETTERS, 1987, 59 (26) :2983-2986
[29]   FINITE-SIZE SCALING FOR THE BOSE CONDENSATE [J].
SINGH, S ;
PATHRIA, RK .
CANADIAN JOURNAL OF PHYSICS, 1985, 63 (03) :358-365
[30]   PERCOLATION OF HYPERSURFACES AND FINITE-SIZE SCALING [J].
KERTESZ, J ;
HERRMANN, HJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (17) :1109-1112