Finite-size correlation length and violations of finite-size scaling

被引:0
|
作者
Caracciolo, S
Gambassi, A
Gubinelli, M
Pelissetto, A
机构
[1] Scuola Normale Super Pisa, I-56100 Pisa, Italy
[2] Ist Nazl Fis Nucl, Sezione Pisa, I-56100 Pisa, Italy
[3] Univ Pisa, Dipartimento Fis, I-56100 Pisa, Italy
[4] Univ Pisa, Ist Nazl Fis Nucl, Sezione Pisa, I-56100 Pisa, Italy
[5] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[6] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sezione Roma 1, I-00185 Rome, Italy
来源
EUROPEAN PHYSICAL JOURNAL B | 2001年 / 20卷 / 02期
关键词
D O I
暂无
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We address the problem of the definition of the finite-volume correlation length. First, we study the large-N limit of the N-vector model, and we show the existence of several constraints on the definition if regularity of the finite-size scaling functions and correct anomalous behaviour above the upper critical dimension are required. Then, we study in detail a model in which the zero mode is prohibited. Such. a model is a generalization of the fixed-magnetization Ising model which is equivalent to the lattice gas. Also in this case, we find that the finite-volume correlation length must satisfy appropriate constraints in order to obtain regular finite-size scaling functions, and, above the upper critical dimension, an anomalous scaling behaviour. The large-N results are confirmed by a one-loop calculation in the lattice phi (4) theory.
引用
收藏
页码:255 / 265
页数:11
相关论文
共 50 条
  • [1] Finite-size correlation length and violations of finite-size scaling
    S. Caracciolo
    A. Gambassi
    M. Gubinelli
    A. Pelissetto
    The European Physical Journal B - Condensed Matter and Complex Systems, 2001, 20 (2): : 255 - 265
  • [2] Finite-size scaling of the correlation length in anisotropic systems
    Chen, X. S.
    Zhang, H. Y.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2007, 21 (23-24): : 4212 - 4218
  • [3] Finite-size scaling of correlation functions in finite systems
    Xin Zhang
    GaoKe Hu
    YongWen Zhang
    XiaoTeng Li
    XiaoSong Chen
    Science China Physics, Mechanics & Astronomy, 2018, 61
  • [4] Finite-size scaling of correlation functions in finite systems
    Xin Zhang
    GaoKe Hu
    YongWen Zhang
    XiaoTeng Li
    XiaoSong Chen
    Science China(Physics,Mechanics & Astronomy), 2018, (12) : 71 - 77
  • [5] Finite-size scaling of correlation functions in finite systems
    Zhang, Xin
    Hu, GaoKe
    Zhang, YongWen
    Li, XiaoTeng
    Chen, XiaoSong
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2018, 61 (12)
  • [6] ON THE QUANTUM FINITE-SIZE SCALING
    KORUTCHEVA, ER
    TONCHEV, NS
    PHYSICA A, 1993, 195 (1-2): : 215 - 222
  • [7] Microcanonical Finite-Size Scaling
    Michael Kastner
    Michael Promberger
    Alfred Hüller
    Journal of Statistical Physics, 2000, 99 : 1251 - 1264
  • [8] Microcanonical finite-size scaling
    Kastner, M
    Promberger, M
    Hüller, A
    JOURNAL OF STATISTICAL PHYSICS, 2000, 99 (5-6) : 1251 - 1264
  • [9] Finite-size scaling in extreme statistics
    Gyoergyi, G.
    Moloney, N. R.
    Ozogany, K.
    Racz, Z.
    PHYSICAL REVIEW LETTERS, 2008, 100 (21)
  • [10] FINITE-SIZE SCALING AND PHENOMENOLOGICAL RENORMALIZATION
    NIGHTINGALE, P
    JOURNAL OF APPLIED PHYSICS, 1982, 53 (11) : 7927 - 7932