Quantum Computing with Rotation-Symmetric Bosonic Codes

被引:133
作者
Grimsmo, Arne L. [1 ]
Combes, Joshua [2 ]
Baragiola, Ben Q. [3 ]
机构
[1] Univ Sydney, Ctr Engn Quantum Syst, Sch Phys, Sydney, NSW, Australia
[2] Univ Queensland, Sch Math & Phys, Ctr Engn Quantum Syst, St Lucia, Qld 4072, Australia
[3] RMIT Univ, Sch Sci, Ctr Quantum Computat & Commun Technol, Melbourne, Vic 3001, Australia
基金
澳大利亚研究理事会;
关键词
ERROR-CORRECTION; PHASE MEASUREMENTS; STATES; ENTANGLEMENT; CIRCUITS; OPERATOR; MODES; QUBIT;
D O I
10.1103/PhysRevX.10.011058
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Bosonic rotation codes, introduced here, are a broad class of bosonic error-correcting codes based on phase-space rotation symmetry. We present a universal quantum computing scheme applicable to a subset of this class-number-phase codes-which includes the well-known cat and binomial codes, among many others. The entangling gate in our scheme is code agnostic and can be used to interface different rotation-symmetric encodings. In addition to a universal set of operations, we propose a teleportation-based error-correction scheme that allows recoveries to be tracked entirely in software. Focusing on cat and binomial codes as examples, we compute average gate fidelities for error correction under simultaneous loss and dephasing noise and show numerically that the error-correction scheme is close to optimal for error-free ancillae and ideal measurements. Finally, we present a scheme for fault-tolerant, universal quantum computing based on the concatenation of number-phase codes and Bacon-Shor subsystem codes.
引用
收藏
页数:32
相关论文
共 101 条
[1]   Pair-cat codes: autonomous error-correction with low-order nonlinearity [J].
Albert, Victor V. ;
Mundhada, Shantanu O. ;
Grimm, Alexander ;
Touzard, Steven ;
Devoret, Michel H. ;
Jiang, Liang .
QUANTUM SCIENCE AND TECHNOLOGY, 2019, 4 (03)
[2]   Performance and structure of single-mode bosonic codes [J].
Albert, Victor V. ;
Noh, Kyungjoo ;
Duivenvoorden, Kasper ;
Young, Dylan J. ;
Brierley, R. T. ;
Reinhold, Philip ;
Vuillot, Christophe ;
Li, Linshu ;
Shen, Chao ;
Girvin, S. M. ;
Terhal, Barbara M. ;
Jiang, Liang .
PHYSICAL REVIEW A, 2018, 97 (03)
[3]   Subsystem fault tolerance with the Bacon-Shor code [J].
Aliferis, Panos ;
Cross, Andrew W. .
PHYSICAL REVIEW LETTERS, 2007, 98 (22)
[4]   Fault-tolerant quantum computation against biased noise [J].
Aliferis, Panos ;
Preskill, John .
PHYSICAL REVIEW A, 2008, 78 (05)
[5]   Operator quantum error-correcting subsystems for self-correcting quantum memories [J].
Bacon, D .
PHYSICAL REVIEW A, 2006, 73 (01)
[6]   All-Gaussian Universality and Fault Tolerance with the Gottesman-Kitaev-Preskill Code [J].
Baragiola, Ben Q. ;
Pantaleoni, Giacomo ;
Alexander, Rafael N. ;
Karanjai, Angela ;
Menicucci, Nicolas C. .
PHYSICAL REVIEW LETTERS, 2019, 123 (20)
[7]   Superconducting quantum circuits at the surface code threshold for fault tolerance [J].
Barends, R. ;
Kelly, J. ;
Megrant, A. ;
Veitia, A. ;
Sank, D. ;
Jeffrey, E. ;
White, T. C. ;
Mutus, J. ;
Fowler, A. G. ;
Campbell, B. ;
Chen, Y. ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Neill, C. ;
O'Malley, P. ;
Roushan, P. ;
Vainsencher, A. ;
Wenner, J. ;
Korotkov, A. N. ;
Cleland, A. N. ;
Martinis, John M. .
NATURE, 2014, 508 (7497) :500-503
[8]   ON THE HERMITIAN OPTICAL-PHASE OPERATOR [J].
BARNETT, SM ;
PEGG, DT .
JOURNAL OF MODERN OPTICS, 1989, 36 (01) :7-19
[9]  
Belavkin V. P., 1975, Stochastics, V1, P315, DOI 10.1080/17442507508833114
[10]  
Belavkin V. P., 1975, Radio Engineering and Electronic Physics, V20, P39