Bi-Lipschitz parameterization of surfaces

被引:27
作者
Bonk, M [1 ]
Lang, U
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] ETH Zentrum, Dept Math, CH-8092 Zurich, Switzerland
关键词
D O I
10.1007/s00208-003-0443-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider surfaces Z homeomorphic to the plane with complete, possibly singular Riemannian metrics. If we have integral(Z) K+ < 2π - ε for the positive and ∫(Z) K- < C for the negative part of the integral curvature, then Z is L-bi-Lipschitz equivalent to R-2 with L depending only on epsilon > 0 and C > 0. This result implies a conjecture by J. Fu.
引用
收藏
页码:135 / 169
页数:35
相关论文
共 18 条
[1]  
ALEKSANDROV AD, 1967, AMS TRANSL MATH MONO, V15
[2]   ON THE EXISTENCE OF ESCAPING GEODESICS [J].
BANGERT, V .
COMMENTARII MATHEMATICI HELVETICI, 1981, 56 (01) :59-65
[3]   GEODESICS AND TOTALLY CONVEX-SETS ON SURFACES [J].
BANGERT, V .
INVENTIONES MATHEMATICAE, 1981, 63 (03) :507-517
[4]  
Bonk M, 2000, INDIANA U MATH J, V49, P61
[5]  
BONK M, QUASICONFORMAL JACOB
[6]  
Cohn-Vossen S., 1935, COMPOS MATH, V2, P69
[7]  
Fu JHG, 1998, INDIANA U MATH J, V47, P439
[8]  
GULLEMIN V, 1974, DIFFERENTIAL TOPOLOG
[9]  
Huber A., 1960, COMMENT MATH HELV, V34, P99
[10]  
HUBER A, 1960, COMMENT MATH HELV, V41, P105