On global synchronization of chaotic systems

被引:0
作者
Liao, XX [1 ]
Chen, GR
Wang, HO
机构
[1] Huazhong Univ Sci & Technol, Dept Control Sci & Engn, Wuhan 430074, Peoples R China
[2] City Univ Hong Kong, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China
[3] Boston Univ, Dept Aerosp & Mech Engn, Boston, MA 02215 USA
来源
DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS | 2003年 / 10卷 / 06期
关键词
chaos; synchronization; Chen system; Lorenz system;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper discusses the basic problem of chaos synchronization and derives some simple yet explicit conditions for its global convergence.
引用
收藏
页码:865 / 872
页数:8
相关论文
共 9 条
[1]   A unifying definition of synchronization for dynamical systems [J].
Brown, R ;
Kocarev, L .
CHAOS, 2000, 10 (02) :344-349
[2]  
Chen G., 1998, CHAOS ORDER METHODOL
[3]   CIRCUIT IMPLEMENTATION OF SYNCHRONIZED CHAOS WITH APPLICATIONS TO COMMUNICATIONS [J].
CUOMO, KM ;
OPPENHEIM, AV .
PHYSICAL REVIEW LETTERS, 1993, 71 (01) :65-68
[4]   Absolute stability theory and the synchronization problem [J].
Curran, PF ;
Chua, LO .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (06) :1375-1382
[5]  
LIAO XX, 1993, ABSOLUTE STABILITY N
[6]   Dynamical analysis of a new chaotic attractor [J].
Lu, JH ;
Chen, GR ;
Zhang, SC .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (05) :1001-1015
[7]   DRIVING SYSTEMS WITH CHAOTIC SIGNALS [J].
PECORA, LM ;
CARROLL, TL .
PHYSICAL REVIEW A, 1991, 44 (04) :2374-2383
[8]   Bifurcation analysis of Chen's equation [J].
Ueta, T ;
Chen, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2000, 10 (08) :1917-1931
[9]   Synchronization stability analysis of the chaotic Rossler system [J].
Xie, QX ;
Chen, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (11) :2153-2161