Ni/YSZ electrodes structures optimized for increased electrolysis performance and durability

被引:177
作者
Hauch, A. [1 ]
Brodersen, K. [1 ]
Chen, M. [1 ]
Mogensen, M. B. [1 ]
机构
[1] Tech Univ Denmark, Dept Energy Convers & Storage, Riso Campus,Frederiksborgvej 399, DK-4000 Roskilde, Denmark
关键词
Solid oxide electrolysis cells; Ni/YSZ electrode; Microstructure; Electrochemical impedance spectroscopy; Performance; Durability; SOLID OXIDE CELL; IMPEDANCE; DEGRADATION; DECONVOLUTION; TEMPERATURE;
D O I
10.1016/j.ssi.2016.06.003
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cermet Ni/YSZ electrodes are the most commonly applied fuel electrode for solid oxide cells (SOC) both when targeting solid oxide fuel cell (SOFC) applications and when used as solid oxide electrolysis cell (SOEC). In this work we report on the correlation between initial Ni/YSZ microstructure and the resulting electrochemical performance both initially and during long-term electrolysis testing at high current density and high p(H2O) inlet. Especially, this work focuses on microstructure optimization to hinder Ni mobility and migration during long-term operation and illustrates the key-role of electrode over-potential on the degradation of the Ni/YSZ electrodes in SOEC. We find that for long-term stability for electrolysis at high current densities and high P(H2O) the as-produced NiO/YSZ precursor electrode should be: 1) As dense as possible, 2) as fine particle and pore sized as possible and 3) the three phases (Ni, YSZ and pore phase) shall be size-matched and well-dispersed. Applying such microstructure optimized Ni/YSZ electrode we show SOEC test results with long-term degradation rate as low as 0.3-0.4%/kh at -1 A/cm(2), 800 degrees C and inlet gas mixture of p(H2O)/p(H-2):90/10. This enables SOEC operation of such cell for more than 5 years below thermo-neutral potential at these operating conditions. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:27 / 36
页数:10
相关论文
共 50 条
  • [21] Jensen S. H., 2006, THESIS
  • [22] Advanced Test Method of Solid Oxide Cells in a Plug-Flow Setup
    Jensen, Soren Hojgaard
    Hauch, Anne
    Hendriksen, Peter Vang
    Mogensen, Mogens
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (06) : B757 - B764
  • [23] Impedance of solid oxide fuel cell LSM/YSZ composite cathodes
    Jorgensen, MJ
    Mogensen, M
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (05) : A433 - A442
  • [24] Triple phase boundary specific pathway analysis for quantitative characterization of solid oxide cell electrode microstructure
    Jorgensen, P. S.
    Ebbehoj, S. L.
    Hauch, A.
    [J]. JOURNAL OF POWER SOURCES, 2015, 279 : 686 - 693
  • [25] Knibbe Ruth, 2011, Green, V1, P141, DOI 10.1515/GREEN.2011.015
  • [26] Solid Oxide Electrolysis Cells: Degradation at High Current Densities
    Knibbe, Ruth
    Traulsen, Marie Lund
    Hauch, Anne
    Ebbesen, Sune Dalgaard
    Mogensen, Mogens
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (08) : B1209 - B1217
  • [27] Electrochemical Analysis of Reformate-Fuelled Anode Supported SOFC
    Kromp, A.
    Leonide, A.
    Weber, A.
    Ivers-Tiffee, E.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (08) : B980 - B986
  • [28] Larsen P. H., 2008, patent, Patent No. [CN101242003-A, 966845]
  • [29] Larsen P. H., 2008, CA2611362-A1, Patent No. 2611362
  • [30] Larsen P. H., 2008, CN101242003-A, Patent No. 101242003