Sums of k unit fractions

被引:10
作者
Elsholtz, C [1 ]
机构
[1] Tech Univ Clausthal, Inst Math, D-38678 Clausthal Zellerfeld, Germany
关键词
D O I
10.1090/S0002-9947-01-02782-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Erdos and Straus conjectured that for any positive integer n greater than or equal to 2 the equation 4/n = 1/x + 1/y + 1/z has a solution in positive integers x; y, and z. Let m >k greater than or equal to 3 and E-m,E-k(N) = \ {n less than or equal to N \ m/n = 1/t(1) + 1/t(k) has no solution with t(i) is an element of N} \. We show that parametric solutions can be used to find upper bounds on E-m,E-k(N) where the number of parameters increases exponentially with k. This enables us to prove E-m,E-k(N) << N exp (-c(m,k)(log N)1-1/2(k-1)-1) with c(m,k) > 0. This improves upon earlier work by Viola (1973) and Shen (1986), and is an "exponential generalization" of the work of Vaughan (1970), who considered the case k = 3.
引用
收藏
页码:3209 / 3227
页数:19
相关论文
共 23 条
[1]   ON THE EQUATION 4/N = 1/X + 1/Y + 1/Z [J].
DELANG, L .
JOURNAL OF NUMBER THEORY, 1981, 13 (04) :485-494
[2]  
Erdos P., 1950, MAT LAPOK, V1, P192
[3]  
GRAHAM RL, 1964, P LOND MATH SOC, V14, P193
[4]   Dense Egyptian fractions [J].
Martin, G .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (09) :3641-3657
[5]   Denser Egyptian fractions [J].
Martin, G .
ACTA ARITHMETICA, 2000, 95 (03) :231-260
[6]   ANALYTIC PRINCIPLE OF LARGE SIEVE [J].
MONTGOMERY, HL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 84 (04) :547-567
[7]  
Sanda M G, 1997, Semin Urol Oncol, V15, P43
[8]   ON 4/N=1/X+1/Y+1/Z AND ROSSER SIEVE [J].
SANDER, JW .
ACTA ARITHMETICA, 1991, 59 (02) :183-204
[9]   ON 4/N=1/X+1/Y+1/Z AND IWANIEC HALF DIMENSIONAL SIEVE [J].
SANDER, JW .
JOURNAL OF NUMBER THEORY, 1994, 46 (02) :123-136
[10]  
SCHINZEL A, 1956, MATHESIS, V65, P219