RAMSEY GOODNESS OF CLIQUE VERSUS PATHS IN RANDOM GRAPHS

被引:3
作者
Moreira, Luiz [1 ]
机构
[1] IMPA, Estr Dona Castorina 110, Rio De Janeiro, RJ, Brazil
关键词
random graphs; graphs; Ramsey; regularity; paths; cliques; NUMBER;
D O I
10.1137/19M1285093
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We say that a graph G is Ramsey for H-1 versus H-2 and write G -> (H-1, H-2) if every red-blue coloring of the edges of G contains either a red copy of H-1 or a blue copy of H-2. In this paper we study the threshold for the event that the Erdos-Renyi random graph G(N, p) is Ramsey for a clique versus a path. We show that G((1 + epsilon)rn, p) -> (Kr+1, P-n) with high probability if p >> n(-2/(r+1)), and G(rn+t, p) -> (Kr+1, P-n) with high probability if p >> n(-2/(r+2)) and t >> 1/p. Both of these results are sharp (in different ways), since with high probability G(Cn, p) negated right arrow (Kr+1, P-n) for any constant C > 0 if p << n(-2/(r+1)), and G(rn+t, p) negated right arrow (Kr+1, P-n) if t << 1/p, for any 0 < p <= 1.
引用
收藏
页码:2210 / 2222
页数:13
相关论文
共 36 条
[1]   Ramsey-goodness-and otherwise [J].
Allen, Peter ;
Brightwell, Graham ;
Skokan, Jozef .
COMBINATORICA, 2013, 33 (02) :125-160
[2]  
Araujo P., RAMSEY GOODNES UNPUB
[3]  
Balogh J., 2018, P INT C MATH RIO DE, VIV, P3059
[4]  
Balogh J, 2015, J AM MATH SOC, V28, P669
[5]   ON SIZE RAMSEY NUMBER OF PATHS, TREES, AND CIRCUITS .1. [J].
BECK, J .
JOURNAL OF GRAPH THEORY, 1983, 7 (01) :115-129
[6]   The size Ramsey number of a directed path [J].
Ben-Eliezer, Ido ;
Krivelevich, Michael ;
Sudakov, Benny .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2012, 102 (03) :743-755
[7]  
Bollobas B, 2001, RANDOM GRAPHS, V2nd
[8]   GENERALIZATIONS OF A RAMSEY-THEORETIC RESULT OF CHVATAL [J].
BURR, SA ;
ERDOS, P .
JOURNAL OF GRAPH THEORY, 1983, 7 (01) :39-51
[9]  
Chvatal V, 1977, J GRAPH THEOR, V1, P93, DOI [DOI 10.1002/JGT.3190010118, 10.1002/jgt.3190010118]
[10]   The size-Ramsey number of powers of paths [J].
Clemens, Dennis ;
Jenssen, Matthew ;
Kohayakawa, Yoshiharu ;
Morrison, Natasha ;
Mota, Guilherme Oliveira ;
Reding, Damian ;
Roberts, Barnaby .
JOURNAL OF GRAPH THEORY, 2019, 91 (03) :290-299