Noble metallic nanostructures: preparation, properties, applications

被引:9
作者
Atanasov, P. A. [1 ]
Nedyalkov, N. N. [1 ]
Dikovska, A. Og [1 ]
Nikov, Ru [1 ]
Amoruso, S. [2 ,3 ]
Wang, X.
Bruzzese, R. [2 ,3 ]
Hirano, K. [4 ]
Shimizu, H. [4 ]
Terakawa, M. [4 ]
Obara, M. [4 ]
机构
[1] Bulgarian Acad Sci, Inst Elect, BU-1784 Sofia, Bulgaria
[2] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy
[3] CNR SPIN, I-80126 Naples, Italy
[4] Keio Univ, Sch Integrated Design Engn, Kohoku Ku, Yokohama, Kanagawa 2238522, Japan
来源
18TH INTERNATIONAL SUMMER SCHOOL ON VACUUM, ELECTRON AND ION TECHNOLOGIES (VEIT2013) | 2014年 / 514卷
关键词
FEMTOSECOND LASER-ABLATION; FABRICATION; VACUUM; FILMS;
D O I
10.1088/1742-6596/514/1/012024
中图分类号
O59 [应用物理学];
学科分类号
摘要
The process of formation and the characteristics are studied of noble metal nanostructures created by pulsed laser ablation in vacuum. Femtosecond (fs) and nanosecond (ns) laser systems lasing at different wavelengths are used. Several different modifications of the pulsed lased deposition (PLD) technique, as off-axis deposition and glancing angle deposition configurations are used to create nanostructures. Laser annealing of single or bimetal thin films is used to fabricate alloyed nanostructures. The possibility is demonstrated of tuning the optical properties of gold nanostructures on flexible substrates. Different experimental techniques, as fast photography, optical emission spectroscopy, FE-SEM, AFM, TEM, and Raman spectroscopy are applied to characterize the noble metallic nanostructures produced. The optical spectra of the Au and Ag nanostructures are also studied experimentally and theoretically. The theoretical simulation methods used are: molecular dynamic (MD), finite difference time domain (FDTD) and a method based on the generalized multi-particle Mie (GMM) theory. Applications of noble metal nanostructures to surface enhanced Raman spectroscopy (SERS) and biophotonics are briefly considered.
引用
收藏
页数:8
相关论文
共 21 条
[1]  
Allen M. P., 2017, COMPUTER SIMULATION
[2]   An analysis of the dependence on photon energy of the process of nanoparticle generation by femtosecond laser ablation in a vacuum [J].
Amoruso, S. ;
Bruzzese, R. ;
Wang, X. ;
Nedialkov, N. N. ;
Atanasov, P. A. .
NANOTECHNOLOGY, 2007, 18 (14)
[3]   Femtosecond laser ablation of nickel in vacuum [J].
Amoruso, S. ;
Bruzzese, R. ;
Wang, X. ;
Nedialkov, N. N. ;
Atanasov, P. A. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (02) :331-340
[4]   Experimental and theoretical investigations of femtosecond laser ablation of aluminum in vacuum [J].
Amoruso, S ;
Bruzzese, R ;
Vitiello, M ;
Nedialkov, NN ;
Atanasov, PA .
JOURNAL OF APPLIED PHYSICS, 2005, 98 (04)
[5]   Ultrafast laser ablation of gold thin film targets [J].
Amoruso, S. ;
Nedyalkov, N. N. ;
Wang, X. ;
Ausanio, G. ;
Bruzzese, R. ;
Atanasov, P. A. .
JOURNAL OF APPLIED PHYSICS, 2011, 110 (12)
[6]   Fabrication of ZnO nanorods using metal nanoparticles as growth nuclei [J].
Dikovska, A. Og. ;
Nedyalkov, N. N. ;
Atanasov, P. A. .
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2011, 176 (19) :1548-1551
[7]   APPLICATION OF THE MORSE POTENTIAL FUNCTION TO CUBIC METALS [J].
GIRIFALCO, LA ;
WEIZER, VG .
PHYSICAL REVIEW, 1959, 114 (03) :687-690
[8]   Probing particle synthesis during femtosecond laser ablation: initial phase transition kinetics [J].
Glover, TE ;
Ackerman, GD ;
Lee, RW ;
Young, DA .
APPLIED PHYSICS B-LASERS AND OPTICS, 2004, 78 (7-8) :995-1000
[9]   Hydrodynamics of particle formation following femtosecond laser ablation [J].
Glover, TE .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2003, 20 (01) :125-131
[10]  
Hirano K, 2013, J NANOTECHNOLOGY DIA, V1, P2