Bounding Zolotarev Numbers Using Faber Rational Functions

被引:0
作者
Rubin, Daniel [1 ,2 ]
Townsend, Alex [1 ]
Wilber, Heather [2 ]
机构
[1] Cornell Univ, Math Dept, Ithaca, NY 14853 USA
[2] Cornell Univ, Ctr Appl Math, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Faber rational functions; Zolotarev; Conformal maps; Singular values; Rational approximation; ALGORITHM; MATRICES;
D O I
10.1007/s00365-022-09585-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By closely following a construction by Ganelius, we use Faber rational functions to derive tight explicit bounds on Zolotarev numbers. We use our results to bound the singular values of matrices, including complex-valued Cauchy matrices and Vandermonde matrices with nodes inside the unit disk. We construct Faber rational functions using doubly connected conformal maps and use their zeros and poles to supply shift parameters in the alternating direction implicit method.
引用
收藏
页码:207 / 232
页数:26
相关论文
共 35 条
[1]  
Akhiezer Naum I., 1990, ELEMENTS THEORY ELLI, V79, DOI DOI 10.1090/MMONO/079
[2]  
ANDERSON JM, 1984, LECT NOTES MATH, V1105, P1
[3]  
[Anonymous], 1997, Logarithmic Potentials with External Fields
[4]   ON INTERPOLATION BY RATIONAL FUNCTIONS [J].
BAGBY, T .
DUKE MATHEMATICAL JOURNAL, 1969, 36 (01) :95-&
[5]  
Batenkov D., ARXIV
[6]   Conditioning of rectangular Vandermonde matrices with nodes in the unit disk [J].
Bazán, FSV .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (02) :679-693
[7]   Bounds on the Singular Values of Matrices with Displacement Structure [J].
Beckermann, Bernhard ;
Townsend, Alex .
SIAM REVIEW, 2019, 61 (02) :319-344
[8]   Barycentric Lagrange interpolation [J].
Berrut, JP ;
Trefethen, LN .
SIAM REVIEW, 2004, 46 (03) :501-517
[9]   On approximation of functions by exponential sums [J].
Beylkin, G ;
Monzón, L .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2005, 19 (01) :17-48
[10]  
Courant R., 1977, Dirichlets Principle, Conformal Mapping, and Minimal Surfaces: Reprint, DOI [10.1007/978-1-4612-9917-2, DOI 10.1007/978-1-4612-9917-2]