Extension to higher dimensions of the Jaeschke-Eicker result on the standardized empirical process

被引:6
作者
Einmahl, JHJ [1 ]
机构
[1] EINDHOVEN UNIV TECHNOL,DEPT MATH & COMP SCI,5600 MB EINDHOVEN,NETHERLANDS
关键词
asymptotic distribution; empirical process; heavy weights;
D O I
10.1080/03610929608831733
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The asymptotic distribution of the sup-norm of the heavily weighted empirical process is established in the multidimensional case. This theorem extends in particular the famous result in Jaeschke (1975, 1979) to higher dimensions. There is a striking difference between the behaviour for higher dimensions and that for dimension one, especially the limiting distribution is now a simple transformation of a standard exponential random variable.
引用
收藏
页码:813 / 822
页数:10
相关论文
共 6 条
[1]   ASYMPTOTIC TAIL BEHAVIOR OF UNIFORM MULTIVARIATE EMPIRICAL PROCESSES [J].
CSORGO, M ;
HORVATH, L .
ANNALS OF PROBABILITY, 1990, 18 (04) :1723-1738
[2]   ASYMPTOTIC-DISTRIBUTION OF THE SUPREMA OF THE STANDARDIZED EMPIRICAL PROCESSES [J].
EICKER, F .
ANNALS OF STATISTICS, 1979, 7 (01) :116-138
[4]  
JAESCHKE D, 1975, THESIS DORTMUND U
[5]  
MASON DM, 1983, STOCHASTIC PROCESS A, V15, P99
[6]  
[No title captured]