Influence of Controlled Aggregation on Thermal Conductivity of Nanofluids

被引:46
|
作者
Azizian, Reza [1 ]
Doroodchi, Elham [2 ]
Moghtaderi, Behdad [3 ]
机构
[1] MIT, Nucl Sci & Engn Dept, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Univ Newcastle, Dept Chem Engn, Ctr Adv Particle Proc, Callaghan, NSW 2308, Australia
[3] Univ Newcastle, Dept Chem Engn, Ctr Energy, Callaghan, NSW 2308, Australia
来源
基金
澳大利亚研究理事会;
关键词
heat transfer; conventional nanofluids; magnetite nanofluids; thermal conductivity; zeta potential; aggregation; CONVECTIVE HEAT-TRANSFER; BROWNIAN-MOTION; SUSPENSIONS; ENHANCEMENT; PH;
D O I
10.1115/1.4031730
中图分类号
O414.1 [热力学];
学科分类号
摘要
Nanoparticles aggregation is considered, by the heat transfer community, as one of the main factors responsible for the observed enhancement in the thermal conductivity of nanofluids. To gain a better insight into the veracity of this claim, we experimentally investigated the influence of nanoparticles aggregation induced by changing the pH value or imposing a magnetic field on the thermal conductivity of water-based nanofluids. The results showed that the enhancement in thermal conductivity of TiO2-water nanofluid, due to pH-induced aggregation of TiO2 nanoparticles, fell within the 610% of the mixture theory, while applying an external magnetic force on Fe3O4-water nanofluid led to thermal conductivity enhancements of up to 167%. It is believed that the observed low enhancement in thermal conductivity of TiO2-water nanofluid is because, near the isoelectric point (IEP), the nanoparticles could settle out of the suspension in the form of large aggregates making the suspension rather unstable. The magnetic field however could provide a finer control over the aggregate size and growth direction without compromising the stability of the nanofluid, and hence significantly enhancing the thermal conductivity of the nanofluid.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Influence of aggregation on thermal conductivity in stable and unstable nanofluids
    Shima, P. D.
    Philip, John
    Raj, Baldev
    APPLIED PHYSICS LETTERS, 2010, 97 (15)
  • [2] Aggregation structure and thermal conductivity of nanofluids
    Xuan, YM
    Li, Q
    Hu, WF
    AICHE JOURNAL, 2003, 49 (04) : 1038 - 1043
  • [3] Diffusion, aggregation, and the thermal conductivity of nanofluids
    Gharagozloo, Patricia E.
    Eaton, John K.
    Goodson, Kenneth E.
    APPLIED PHYSICS LETTERS, 2008, 93 (10)
  • [4] Effect of aggregation on thermal conductivity and viscosity of nanofluids
    Sunita Gaganpreet
    Applied Nanoscience, 2012, 2 : 325 - 331
  • [5] On the Effective Thermal Conductivity of Nanofluids With Fractal Aggregation
    Subramaniam, C. G.
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2019, 141 (04):
  • [6] Effect of aggregation state on the thermal conductivity of nanofluids
    Chen W.
    Wang S.
    Zhai Y.
    Li Z.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2023, 42 (11): : 5700 - 5706
  • [7] Multifunctional Nanofluids: Synthesis, Aggregation and Thermal Conductivity
    Jiang, Wei
    Wang, Liqiu
    CURRENT NANOSCIENCE, 2011, 7 (03) : 480 - 488
  • [8] Effect of aggregation on thermal conductivity and viscosity of nanofluids
    Gaganpreet
    Srivastava, Sunita
    APPLIED NANOSCIENCE, 2012, 2 (03) : 325 - 331
  • [9] Monodisperse magnetite nanofluids: Synthesis, aggregation, and thermal conductivity
    Jiang, Wei
    Wang, Liqiu
    JOURNAL OF APPLIED PHYSICS, 2010, 108 (11)
  • [10] Effect of copper nanoparticle aggregation on the thermal conductivity of nanofluids
    Suleimanov, B. A.
    Abbasov, H. F.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2016, 90 (02) : 420 - 428