Influence of Controlled Aggregation on Thermal Conductivity of Nanofluids

被引:47
作者
Azizian, Reza [1 ]
Doroodchi, Elham [2 ]
Moghtaderi, Behdad [3 ]
机构
[1] MIT, Nucl Sci & Engn Dept, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Univ Newcastle, Dept Chem Engn, Ctr Adv Particle Proc, Callaghan, NSW 2308, Australia
[3] Univ Newcastle, Dept Chem Engn, Ctr Energy, Callaghan, NSW 2308, Australia
来源
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME | 2016年 / 138卷 / 02期
基金
澳大利亚研究理事会;
关键词
heat transfer; conventional nanofluids; magnetite nanofluids; thermal conductivity; zeta potential; aggregation; CONVECTIVE HEAT-TRANSFER; BROWNIAN-MOTION; SUSPENSIONS; ENHANCEMENT; PH;
D O I
10.1115/1.4031730
中图分类号
O414.1 [热力学];
学科分类号
摘要
Nanoparticles aggregation is considered, by the heat transfer community, as one of the main factors responsible for the observed enhancement in the thermal conductivity of nanofluids. To gain a better insight into the veracity of this claim, we experimentally investigated the influence of nanoparticles aggregation induced by changing the pH value or imposing a magnetic field on the thermal conductivity of water-based nanofluids. The results showed that the enhancement in thermal conductivity of TiO2-water nanofluid, due to pH-induced aggregation of TiO2 nanoparticles, fell within the 610% of the mixture theory, while applying an external magnetic force on Fe3O4-water nanofluid led to thermal conductivity enhancements of up to 167%. It is believed that the observed low enhancement in thermal conductivity of TiO2-water nanofluid is because, near the isoelectric point (IEP), the nanoparticles could settle out of the suspension in the form of large aggregates making the suspension rather unstable. The magnetic field however could provide a finer control over the aggregate size and growth direction without compromising the stability of the nanofluid, and hence significantly enhancing the thermal conductivity of the nanofluid.
引用
收藏
页数:6
相关论文
共 26 条
[1]  
[Anonymous], 2008, CHINESE PHYS LETT, DOI DOI 10.1088/0256-307X/25/5/099
[2]   Effect of magnetic field on laminar convective heat transfer of magnetite nanofluids [J].
Azizian, R. ;
Doroodchi, E. ;
McKrell, T. ;
Buongiorno, J. ;
Hu, L. W. ;
Moghtaderi, B. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2014, 68 :94-109
[3]   Effect of Nanoconvection Caused by Brownian Motion on the Enhancement of Thermal Conductivity in Nanofluids [J].
Azizian, Reza ;
Doroodchi, Elham ;
Moghtaderi, Behdad .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2012, 51 (04) :1782-1789
[4]   A benchmark study on the thermal conductivity of nanofluids [J].
Buongiorno, Jacopo ;
Venerus, David C. ;
Prabhat, Naveen ;
McKrell, Thomas ;
Townsend, Jessica ;
Christianson, Rebecca ;
Tolmachev, Yuriy V. ;
Keblinski, Pawel ;
Hu, Lin-wen ;
Alvarado, Jorge L. ;
Bang, In Cheol ;
Bishnoi, Sandra W. ;
Bonetti, Marco ;
Botz, Frank ;
Cecere, Anselmo ;
Chang, Yun ;
Chen, Gany ;
Chen, Haisheng ;
Chung, Sung Jae ;
Chyu, Minking K. ;
Das, Sarit K. ;
Di Paola, Roberto ;
Ding, Yulong ;
Dubois, Frank ;
Dzido, Grzegorz ;
Eapen, Jacob ;
Escher, Werner ;
Funfschilling, Denis ;
Galand, Quentin ;
Gao, Jinwei ;
Gharagozloo, Patricia E. ;
Goodson, Kenneth E. ;
Gutierrez, Jorge Gustavo ;
Hong, Haiping ;
Horton, Mark ;
Hwang, Kyo Sik ;
Iorio, Carlo S. ;
Jang, Seok Pil ;
Jarzebski, Andrzej B. ;
Jiang, Yiran ;
Jin, Liwen ;
Kabelac, Stephan ;
Kamath, Aravind ;
Kedzierski, Mark A. ;
Kieng, Lim Geok ;
Kim, Chongyoup ;
Kim, Ji-Hyun ;
Kim, Seokwon ;
Lee, Seung Hyun ;
Leong, Kai Choong .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (09)
[5]  
Choi S., 1995, ENHANCING THERMAL CO, V66
[6]   Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids [J].
Evans, William ;
Prasher, Ravi ;
Fish, Jacob ;
Meakin, Paul ;
Phelan, Patrick ;
Keblinski, Pawel .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2008, 51 (5-6) :1431-1438
[7]   Why Would Furniture Be Relevant for Collaborative Learning? Introduction [J].
Huang, J. ;
Cherubini, M. ;
Nova, N. ;
Dillenbourg, P. .
INTERACTIVE ARTIFACTS AND FURNITURE SUPPORTING COLLABORATIVE WORK AND LEARNING, 2009, 10 :1-13
[8]   Role of Brownian motion in the enhanced thermal conductivity of nanofluids [J].
Jang, SP ;
Choi, SUS .
APPLIED PHYSICS LETTERS, 2004, 84 (21) :4316-4318
[9]   Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids) [J].
Keblinski, P ;
Phillpot, SR ;
Choi, SUS ;
Eastman, JA .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2002, 45 (04) :855-863
[10]   Thermal conductivity enhancement dependent pH and chemical surfactant for Cu-H2O nanofluids [J].
Li, X. F. ;
Zhu, D. S. ;
Wang, X. J. ;
Wang, N. ;
Gao, J. W. ;
Li, H. .
THERMOCHIMICA ACTA, 2008, 469 (1-2) :98-103