Robust Quickest Change Detection in Statistically Periodic Processes

被引:0
|
作者
Banerjee, Taposh [1 ]
Taha, Ahmad [1 ]
John, Eugene [1 ]
机构
[1] Univ Texas San Antonio, San Antonio, TX 78249 USA
来源
2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT) | 2021年
基金
美国国家科学基金会;
关键词
D O I
10.1109/ISIT45174.2021.9518067
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The problem of detecting a change in the distribution of a statistically periodic process is investigated. The problem is posed in the framework of independent and periodically identically distributed (i.p.i.d.) processes, a recently introduced class of processes to model statistically periodic data. An algorithm is proposed that is shown to be robust against an uncertainty in the post-change law. The motivation for the problem comes from event detection problems in traffic data, social network data, electrocardiogram data, and neural data, where periodic statistical behavior has been observed.
引用
收藏
页码:101 / 105
页数:5
相关论文
共 50 条
  • [1] Multislot and Multistream Quickest Change Detection in Statistically Periodic Processes
    Banerjee, Taposh
    Gurram, Prudhvi
    Whipps, Gene
    2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 1147 - 1152
  • [2] Quickest change detection in statistically periodic processes with unknown post-change distribution
    Oleyaeimotlagh, Yousef
    Banerjee, Taposh
    Taha, Ahmad
    John, Eugene
    SEQUENTIAL ANALYSIS-DESIGN METHODS AND APPLICATIONS, 2023, 42 (04): : 404 - 437
  • [3] Bayesian Quickest Detection of Changes in Statistically Periodic Processes
    Banerjee, Taposh
    Gurram, Prudhvi
    Whipps, Gene
    2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2019, : 2204 - 2208
  • [4] QUICKEST JOINT DETECTION AND CLASSIFICATION OF FAULTS IN STATISTICALLY PERIODIC PROCESSES
    Banerjee, Taposh
    Padhy, Smruti
    Taha, Ahmad
    John, Eugene
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 5015 - 5019
  • [5] Robust quickest change detection in nonstationary processes
    Hou, Yingze
    Oleyaeimotlagh, Yousef
    Mishra, Rahul
    Bidkhori, Hoda
    Banerjee, Taposh
    SEQUENTIAL ANALYSIS-DESIGN METHODS AND APPLICATIONS, 2024, 43 (03): : 275 - 300
  • [6] Minimax asymptotically optimal quickest change detection for statistically periodic data
    Banerjee, Taposh
    Gurram, Prudhvi
    Whipps, Gene
    SIGNAL PROCESSING, 2024, 215
  • [7] A Bayesian Theory of Change Detection in Statistically Periodic Random Processes
    Banerjee, Taposh
    Gurram, Prudhvi
    Whipps, Gene T.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (04) : 2562 - 2580
  • [8] Minimax Robust Quickest Change Detection
    Unnikrishnan, Jayakrishnan
    Veeravalli, Venugopal V.
    Meyn, Sean P.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (03) : 1604 - 1614
  • [9] Robust Quickest Change Detection for Unnormalized Models
    Wu, Suya
    Diao, Enmao
    Banerjee, Taposh
    Ding, Jie
    Tarokh, Vahid
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 2314 - 2323
  • [10] Asymptotic Minimax Robust Quickest Change Detection for Dependent Stochastic Processes With Parametric Uncertainty
    Molloy, Timothy L.
    Ford, Jason J.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (11) : 6594 - 6608