Moment inequalities for the partial sums of random variables

被引:14
作者
Yang, SC [1 ]
机构
[1] Guangxi Normal Univ, Dept Math & Comp Sci, Guilin 541004, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY | 2001年 / 44卷 / 01期
关键词
partial sum; M-Z-B type inequality; Rosenthal type inequality;
D O I
10.1007/BF02872276
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper discusses the conditions under which Rosenthal type inequality is obtained from M-Z-B type inequality. And M-Z-B type inequality is proved for a wide class of random variables. Hence Rosenthal type inequalities for some classes of random variables are obtained.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 14 条
[1]   MOMENT CONDITIONS FOR ALMOST SURE CONVERGENCE OF WEAKLY CORRELATED RANDOM-VARIABLES [J].
BRYC, W ;
SMOLENSKI, W .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 119 (02) :629-635
[2]   ALMOST COMPLETE CONVERGENCE PROPERTIES OF THE KERNEL PREDICTOR [J].
COLLOMB, G .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1984, 66 (03) :441-460
[3]   NEGATIVE ASSOCIATION OF RANDOM-VARIABLES, WITH APPLICATIONS [J].
JOAGDEV, K ;
PROSCHAN, F .
ANNALS OF STATISTICS, 1983, 11 (01) :286-295
[4]   A NOTE ON THE ALMOST SURE CONVERGENCE OF SUMS OF NEGATIVELY DEPENDENT RANDOM-VARIABLES [J].
MATULA, P .
STATISTICS & PROBABILITY LETTERS, 1992, 15 (03) :209-213
[5]   CONVERGENCE-RATES OF THE STRONG LAW FOR STATIONARY MIXING SEQUENCES [J].
PELIGRAD, M .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 70 (02) :307-314
[6]   ON THE CENTRAL-LIMIT-THEOREM FOR RHO-MIXING SEQUENCES OF RANDOM-VARIABLES [J].
PELIGRAD, M .
ANNALS OF PROBABILITY, 1987, 15 (04) :1387-1394
[7]   INVARIANCE-PRINCIPLES FOR MIXING SEQUENCES OF RANDOM-VARIABLES [J].
PELIGRAD, M .
ANNALS OF PROBABILITY, 1982, 10 (04) :968-981
[8]  
Shao Q.M., 1988, Acta Math. Sinica Chin. Ser, V31, P736
[9]  
Shao Q. M., 1989, Acta Mathematica Sinica, Chinese Series, V32, P377
[10]   MAXIMAL INEQUALITIES FOR PARTIAL-SUMS OF RHO-MIXING SEQUENCES [J].
SHAO, QM .
ANNALS OF PROBABILITY, 1995, 23 (02) :948-965