Enhanced Removal of Pb2+, Cu2+, and Cd2+ by Amino-Functionalized Magnetite/Kaolin Clay

被引:80
|
作者
Qin, Lilu [1 ]
Yan, Liangguo [1 ]
Chen, Jian [1 ]
Liu, Tiantian [1 ]
Yu, Haiqin [1 ]
Du, Bin [1 ]
机构
[1] Univ Jinan, Sch Resources & Environm, Shandong Prov Engn Technol Res Ctr Groundwater Nu, Jinan 250022, Peoples R China
关键词
HEAVY-METAL ADSORPTION; AQUEOUS-SOLUTION; EFFICIENT REMOVAL; PB(II) ADSORPTION; MAGNETIC FE3O4; ION ADSORPTION; KAOLIN CLAY; EQUILIBRIUM; COMPOSITES; BEHAVIOR;
D O I
10.1021/acs.iecr.6b00657
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The amino-functionalized magnetite/kaolin clay (MKC) was synthesized via a simple solvothermal method and used to remove Pb2+, Cu2+, and Cd2+ from aqueous solutions. In comparison, the kaolin clay (KC) and MKC were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and scanning and transmission electron microscopy with energy dispersive spectrometry. The results indicated amino-functionalized MKC was formed with Fe3O4 particles adhering to the surface by interactions with negatively charged KC. The optimal experimental conditions were evaluated, and the adsorption performance of MKC for Pb2+, Cu2+, and Cd2+ was far better than that of KC. This was mainly caused by adding an amino group, in which the amino group displayed complexing ability toward metal ions. In kinetic data representation, the pseudo-first-order, pseudo-second-order, and Elovich models were employed, and the second one gave the better fitting. Langmuir, Freundlich, and DubininRadushkevich models were chosen for isotherm data correlation, of which the first one showed better suitability. The X-ray photoelectron spectroscopy analysis of MKC before and after adsorption further revealed that the adsorption mechanisms of Pb2+, Cu2+, and Cd2+ could be a combined reaction of complexation between functional groups and metal ions and electrostatic attraction. In addition, MKC can be rapidly separated using only a magnet after the adsorption process.
引用
收藏
页码:7344 / 7354
页数:11
相关论文
共 50 条
  • [1] REMOVAL OF Cd2+, Cu2+ AND Pb2+ WITH A BURKINA FASO CLAY
    Sorgho, Brahima
    Mahamane, Abdoulkadri Ayouba
    Guel, Boubie
    Zerbo, Lamine
    Gomina, Moussa
    Blanchart, Philippe
    SCIENTIFIC STUDY AND RESEARCH-CHEMISTRY AND CHEMICAL ENGINEERING BIOTECHNOLOGY FOOD INDUSTRY, 2016, 17 (04): : 365 - 379
  • [2] Urea formaldehyde modified alginate beads with improved stability and enhanced removal of Pb2+, Cd2+, and Cu2+
    Qu, Ping
    Li, Yuncong
    Huang, Hongying
    Chen, Jianjun
    Yu, Zebin
    Huang, Jun
    Wang, Hailong
    Gao, Bin
    JOURNAL OF HAZARDOUS MATERIALS, 2020, 396
  • [3] Adsorption of Pb2+ and Cu2+ on anionic surfactant-templated amino-functionalized mesoporous silicas
    Hao, Shiyou
    Zhong, Yijun
    Pepe, Francesco
    Zhu, Weidong
    CHEMICAL ENGINEERING JOURNAL, 2012, 189 : 160 - 167
  • [4] Enhancing Removal of Cr(VI), Pb2+, and Cu2+ from Aqueous Solutions Using Amino-Functionalized Cellulose Nanocrystal
    Xu, Qinghua
    Huang, Xiaodi
    Guo, Lukuan
    Wang, Yu
    Jin, Liqiang
    MOLECULES, 2021, 26 (23):
  • [5] Cd2+, Cu2+, and Pb2+ sorption, desorption and migration in Fluvisols
    Arenas-Lago, D.
    Rodriguez-Seijo, A.
    Cerqueira, B.
    Andrade, M. L.
    Vega, F. A.
    SPANISH JOURNAL OF SOIL SCIENCE, 2015, 5 (03): : 276 - 295
  • [6] Study on Removal of Heavy Metal Ions (Pb2+, Cd2+ and Cu2+) by Coriandrum sativum (Coriander)
    Bahloul, A.
    Zouaoui, H.
    Diafat, A.
    Meribai, A.
    Noufel, Y.
    Derrardja, M.
    Nessark, B.
    JOURNAL OF WATER CHEMISTRY AND TECHNOLOGY, 2020, 42 (03) : 157 - 163
  • [7] Study on Removal of Heavy Metal Ions (Pb2+, Cd2+ and Cu2+) by Coriandrum sativum (Coriander)
    A. Bahloul
    H. Zouaoui
    A. Diafat
    A. Meribai
    Y. Noufel
    M. Derrardja
    B. Nessark
    Journal of Water Chemistry and Technology, 2020, 42 : 157 - 163
  • [8] Removal of coexisting Pb2+, Cu2+ and Cd2+ ions from water by addition of hydroxyapatite powder
    Takeuchi, Yasushi
    Arai, Hironori
    Journal of Chemical Engineering of Japan, 1990, 23 (01): : 75 - 80
  • [9] Removal of Zn2+, Pb2+, Cd2+, and Cu2+ from aqueous solution by synthetic clinoptilolite
    Li, Yaorui
    Bai, Pu
    Yan, Yan
    Yan, Wenfu
    Shi, Wei
    Xu, Ruren
    MICROPOROUS AND MESOPOROUS MATERIALS, 2019, 273 : 203 - 211
  • [10] Pb2+, Cu2+ and Cd2+ ions uptake by Brazilian phosphate rocks
    Mavropoulos, E
    da Rocha, NCC
    Moreira, JC
    Bertolino, LC
    Rossi, AM
    JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY, 2005, 16 (01) : 62 - 68