Improving Multiset Canonical Correlation Analysis in High Dimensional Sample Deficient Settings

被引:0
作者
Asendorf, Nicholas [1 ]
Nadakuditi, Raj Rao [1 ]
机构
[1] Univ Michigan, Dept Elect & Comp Engn, Ann Arbor, MI 48105 USA
来源
2015 49TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS | 2015年
关键词
SETS;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider the problem of inferring and learning latent correlations present in multiple noisy matrix-valued datasets using multiset canonical correlation analysis (MCCA). We show that empirical MCCA will provably fail to infer the presence of latent correlations when the sample size is less than a threshold that is completely specified by the dimensionality of the datasets. For the setting where the individual noisy data matrices are structured as low-rank-plus-noise, we propose a simple modification of MCCA, which we label Informative MCCA (IMCCA). We show, on both synthetic and real-world datasets, that IMCCA reliably infers and learns latent correlations.
引用
收藏
页码:112 / 116
页数:5
相关论文
共 17 条
  • [1] [Anonymous], 1994, SCIENCE
  • [2] [Anonymous], INT J NEURAL SYSTEMS
  • [3] Chaudhuri K., 2009, Proceedings of the 26th International Conference on Machine Learning, P129, DOI DOI 10.1145/1553374.1553391
  • [4] Chen X., 2014, J APPL MATH, V2014
  • [5] Canonical Correlation Analysis for Data Fusion and Group Inferences
    Correa, Nicolle M.
    Adali, Tulay
    Li, Yi-Ou
    Calhoun, Vince D.
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2010, 27 (04) : 39 - 50
  • [6] Deleus F., 2011, J NEUROSCIENCE METHO
  • [7] Dhillon P., 2011, Advances in Neural Information Processing Systems, V24
  • [8] Guccione P, 2013, I CON ADV BIOMED ENG, P207, DOI 10.1109/ICABME.2013.6648884
  • [9] Canonical correlation analysis: An overview with application to learning methods
    Hardoon, DR
    Szedmak, S
    Shawe-Taylor, J
    [J]. NEURAL COMPUTATION, 2004, 16 (12) : 2639 - 2664
  • [10] HORST P, 1961, J CLIN PSYCHOL, V17, P331, DOI 10.1002/1097-4679(196110)17:4<331::AID-JCLP2270170402>3.0.CO