Auto-Navigator: Decoupled Neural Architecture Search for Visual Navigation

被引:5
作者
Tang, Tianqi [1 ]
Yu, Xin [1 ]
Dong, Xuanyi [1 ]
Yang, Yi [1 ]
机构
[1] Univ Technol Sydney, ReLER Lab, AAII, Sydney, NSW, Australia
来源
2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WACV 2021 | 2021年
关键词
D O I
10.1109/WACV48630.2021.00379
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Existing visual navigation approaches leverage classification neural networks to extract global features from visual data for navigation. However, these networks are not originally designed for navigation tasks. Thus, the neural architectures might not be suitable to capture scene contents. Fortunately, neural architecture search (NAS) brings a hope to solve this problem. In this paper, we propose an Auto-Navigator to customize a specialized network for visual navigation. However, as navigation tasks mainly rely on reinforcement learning (RL) rewards in training, such weak supervision is insufficiently indicative for NAS to optimize visual perception network. Thus, we introduce imitation learning (IL) with optimal paths to optimize navigation policies while selecting an optimal architecture. As Auto-Navigator can obtain a direct supervision in every step, such guidance greatly facilitates architecture search. In particular, we initialize our Auto-Navigator with a learnable distribution over the search space of visual perception architecture, and then optimize the distribution with IL supervision. Afterwards, we employ an RL reward function to fine-tune our Auto-Navigator to improve the generalization ability of our model. Extensive experiments demonstrate that our Auto-Navigator outperforms baseline methods on Gibson and Matterport3D without significantly increasing network parameters.
引用
收藏
页码:3742 / 3751
页数:10
相关论文
共 48 条
[1]  
Anderson Peter, 2018, arXiv
[2]  
[Anonymous], 2006, Planning Algorithms
[3]  
[Anonymous], 2017, C TRACK P
[4]   A survey of robot learning from demonstration [J].
Argall, Brenna D. ;
Chernova, Sonia ;
Veloso, Manuela ;
Browning, Brett .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2009, 57 (05) :469-483
[5]   Simultaneous localization and mapping (SLAM): Part II [J].
Bailey, Tim ;
Durrant-Whyte, Hugh .
IEEE ROBOTICS & AUTOMATION MAGAZINE, 2006, 13 (03) :108-117
[6]  
Brock Andrew, 2018, INT C LEARN REPR
[7]   Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age [J].
Cadena, Cesar ;
Carlone, Luca ;
Carrillo, Henry ;
Latif, Yasir ;
Scaramuzza, Davide ;
Neira, Jose ;
Reid, Ian ;
Leonard, John J. .
IEEE TRANSACTIONS ON ROBOTICS, 2016, 32 (06) :1309-1332
[8]  
Dong X., 2020, ARXIV PREPRINT ARXIV
[9]   One-Shot Neural Architecture Search via Self-Evaluated Template Network [J].
Dong, Xuanyi ;
Yang, Yi .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :3680-3689
[10]   Searching for A Robust Neural Architecture in Four GPU Hours [J].
Dong, Xuanyi ;
Yang, Yi .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :1761-1770