CONVERGENCE OF FLUX-SPLITTING FINITE VOLUME SCHEMES FOR HYPERBOLIC SCALAR CONSERVATION LAWS WITH A MULTIPLICATIVE STOCHASTIC PERTURBATION

被引:18
作者
Bauzet, C. [1 ]
Charrier, J. [1 ]
Gallouet, T. [1 ]
机构
[1] Aix Marseille Univ, CNRS, Cent Marseille, I2M,UMR 7373, F-13453 Marseille, France
关键词
Stochastic PDE; first-order hyperbolic equation; Ito integral; multiplicative noise; finite volume method; flux-splitting scheme; Engquist-Osher scheme; Lax-Friedrichs scheme; upwind scheme; Young measures; Kruzhkov smooth entropy; CAUCHY-PROBLEM; EQUATION;
D O I
10.1090/mcom/3084
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Here, we study explicit flux-splitting finite volume discretizations of multi-dimensional nonlinear scalar conservation laws perturbed by a multiplicative noise with a given initial data in L-2(R-d). Under a stability condition on the time step, we prove the convergence of the finite volume approximation towards the unique stochastic entropy solution of the equation.
引用
收藏
页码:2777 / 2813
页数:37
相关论文
共 19 条