Order at the Edge of the Bilayer: Membrane Remodeling at the Edge of a Planar Supported Bilayer Is Accompanied by a Localized Phase Change

被引:33
作者
Smith, Andreia M. [1 ]
Vinchurkar, Madhuri [2 ]
Gronbech-Jensen, Niels [2 ]
Parikh, Atul N. [1 ,2 ]
机构
[1] Univ Calif Davis, Biophys Grad Grp, Davis, CA 95616 USA
[2] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA
关键词
MOLECULAR-DYNAMICS SIMULATION; LIPID-BILAYERS; PHOSPHOLIPID-BILAYERS; VESICLES; MODEL; MONOLAYERS; ORGANIZATION; ASSEMBLIES; PROTEINS; BEHAVIOR;
D O I
10.1021/ja100294k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We present experimental evidence for the existence of a unique molecular-level order in the vicinity of the bilayer's edge. Discrete patches of substrate-supported lipid bilayers exhibiting stable edge defects are prepared by confining vesicle fusion to hydrophilic patches of a chemically patterned substrate exhibiting hydrophilic patches in hydrophobic surrounding, and edge properties are characterized by fluorescence and vibrational spectroscopy based measurements. Specifically, wide-field fluorescence microscopy using phase-sensitive dyes, temperature-programmed fluorescence recovery measurements, and temperature-dependent attenuated total reflection Fourier transform infrared spectroscopy measurements are performed to characterize the local chain conformational properties, local diffusional characteristics, and phase discrimination afforded by phase-sensitive Dil fluorescent probes. We find that the bilayer structure near the edge is characterized by (1) an increase in intramolecular conformational order; (2) reduced effective lateral mobility; and (3) a distinctly higher local, effective gel-fluid transition temperature in comparison to their bulk counterpart. Together, these features signal the emergence of unique ordering presumably triggered by the hemimicellar configuration of the edge. These results are consistent with simulations of lyso-lipid micelles predicting the presence of dynamic clusters of ordered lipids in comparable micellar topology and disagrees with some recent interpretations of mobility near the edges of supported bilayers. Our results also offer the structural basis for the stability of defects and edges in fluid supported bilayers, and may be relevant in understanding the ordering and stabilization of pores, edges, and defects generated in membrane bilayers by proteins, curvature-sensitive lipids, antimicrobial peptides, and detergents.
引用
收藏
页码:9320 / 9327
页数:8
相关论文
共 42 条
[1]   Interaction between inclusions embedded in membranes [J].
ArandaEspinoza, H ;
Berman, A ;
Dan, N ;
Pincus, P ;
Safran, S .
BIOPHYSICAL JOURNAL, 1996, 71 (02) :648-656
[2]   MOBILITY MEASUREMENT BY ANALYSIS OF FLUORESCENCE PHOTOBLEACHING RECOVERY KINETICS [J].
AXELROD, D ;
KOPPEL, DE ;
SCHLESSINGER, J ;
ELSON, E ;
WEBB, WW .
BIOPHYSICAL JOURNAL, 1976, 16 (09) :1055-1069
[3]   PHYSICAL-PROPERTIES OF SINGLE PHOSPHOLIPID-BILAYERS ADSORBED TO MICRO GLASS-BEADS - A NEW VESICULAR MODEL SYSTEM STUDIED BY H-2-NUCLEAR MAGNETIC-RESONANCE [J].
BAYERL, TM ;
BLOOM, M .
BIOPHYSICAL JOURNAL, 1990, 58 (02) :357-362
[4]   POLYMORPHIC PHASE-BEHAVIOR OF PHOSPHOLIPID-MEMBRANES STUDIED BY INFRARED-SPECTROSCOPY [J].
CASAL, HL ;
MANTSCH, HH .
BIOCHIMICA ET BIOPHYSICA ACTA, 1984, 779 (04) :381-401
[5]   Protein-lipid interplay in fusion and fission of biological membranes [J].
Chernomordik, LV ;
Kozlov, MM .
ANNUAL REVIEW OF BIOCHEMISTRY, 2003, 72 :175-207
[6]   Formation and spreading of lipid bilayers on planar glass supports [J].
Cremer, PS ;
Boxer, SG .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (13) :2554-2559
[7]   MOLECULAR-ORGANIZATION IN MICELLES AND VESICLES [J].
DILL, KA ;
FLORY, PJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-PHYSICAL SCIENCES, 1981, 78 (02) :676-680
[8]   DEEP UV PHOTOCHEMISTRY OF CHEMISORBED MONOLAYERS - PATTERNED COPLANAR MOLECULAR ASSEMBLIES [J].
DULCEY, CS ;
GEORGER, JH ;
KRAUTHAMER, V ;
STENGER, DA ;
FARE, TL ;
CALVERT, JM .
SCIENCE, 1991, 252 (5005) :551-554
[9]   Crossing the hydrophobic barrier: Insertion of membrane proteins [J].
Engelman, DM .
SCIENCE, 1996, 274 (5294) :1850-1851
[10]   Micropattern formation in supported lipid membranes [J].
Groves, JT ;
Boxer, SG .
ACCOUNTS OF CHEMICAL RESEARCH, 2002, 35 (03) :149-157