Redox-active polyimide-polyether block copolymers as electrode materials for lithium batteries

被引:69
作者
Hernandez, Guiomar [1 ]
Casado, Nerea [1 ]
Coste, Raphael [1 ,2 ]
Shanmukaraj, Devaraj [3 ]
Rubatat, Laurent [2 ]
Armand, Michel [3 ]
Mecerreyes, David [1 ,4 ]
机构
[1] Univ Basque Country, UPV, EHU, Joxe Mari Korta Ctr,POLYMAT, San Sebastian 20018, Spain
[2] Univ Pau & Pays Adour, EPCP, IPREM, UMR 5254, F-64053 Pau 9, France
[3] CIC Energigune, Minano 01510, Alava, Spain
[4] Ikerbasque, Basque Fdn Sci, E-48011 Bilbao, Spain
来源
RSC ADVANCES | 2015年 / 5卷 / 22期
基金
欧洲研究理事会;
关键词
ION BATTERIES; STORAGE MATERIALS; ORGANIC CATHODE; CAPACITY; SEPARATION; POLYMERS; ANODE;
D O I
10.1039/c4ra15976d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Redox-active polyimide-polyether multi-block copolymers were synthesized by polycondensation reaction of aromatic dianhydrides with alpha-omega-diamino poly(ethylene oxide). Polyimide-b-polyether block copolymers showed microphase separation between a hard-polyimide domain and a soft-polyether domain as observed by Atomic Force Microscopy. The block copolymers were investigated as cathodes for polymer/lithium metal batteries. Polymer cathodes were formulated where the block copolymer had a dual role as active material and binder, with a small amount of carbon black (15 wt%). Naphthalene polyimides showed higher discharge voltages, higher specific capacities as well as better cycling performance, compared to pyromellitic polyimides. The longest PEO blocks resulted in a better performance as electrodes. The best performing naphthalene polyimide-b-PEO2000 presented an excellent value of discharge capacity of 170 mA h g(-1), stable after 100 cycles at a current density of 1Li(+)/5 h and considering the polyimide as the active material. The average discharge plateaus were 2.51 V and 2.37 V vs. Li+/Li.
引用
收藏
页码:17096 / 17103
页数:8
相关论文
共 32 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Polyimide as anode electrode material for rechargeable sodium batteries [J].
Chen, Long ;
Li, Wangyu ;
Wang, Yonggang ;
Wang, Congxiao ;
Xia, Yongyao .
RSC ADVANCES, 2014, 4 (48) :25369-25373
[3]   Scaling-down lithographic dimensions with block-copolymer materials: 10-nm-sized features with poly(styrene)-block-poly(methylmethacrylate) [J].
Chevalier, Xavier ;
Nicolet, Celia ;
Tiron, Raluca ;
Gharbi, Ahmed ;
Argoud, Maxime ;
Pradelles, Jonathan ;
Delalande, Michael ;
Cunge, Gilles ;
Fleury, Guillaume ;
Hadziioannou, Georges ;
Navarro, Christophe .
JOURNAL OF MICRO-NANOLITHOGRAPHY MEMS AND MOEMS, 2013, 12 (03)
[4]   Network Structure and Strong Microphase Separation for High Ion Conductivity in Polymerized Ionic Liquid Block Copolymers [J].
Choi, Jae-Hong ;
Ye, Yuesheng ;
Elabd, Yossef A. ;
Winey, Karen I. .
MACROMOLECULES, 2013, 46 (13) :5290-5300
[5]   A low cost, all-organic Na-ion Battery Based on Polymeric Cathode and Anode [J].
Deng, Wenwen ;
Liang, Xinmiao ;
Wu, Xianyong ;
Qian, Jiangfeng ;
Cao, Yuliang ;
Ai, Xinping ;
Feng, Jiwen ;
Yang, Hanxi .
SCIENTIFIC REPORTS, 2013, 3
[6]   Systematic study of the structure of alternate pyromellitimide-PEO copolymers:: Influence of the chain flexibility [J].
Djurado, David ;
Curtet, Jean Pierre ;
Bee, Marc ;
Michot, Christophe ;
Armand, Michel .
ELECTROCHIMICA ACTA, 2007, 53 (04) :1497-1502
[7]   COMPLEXES OF ALKALI-METAL IONS WITH POLY(ETHYLENE OXIDE) [J].
FENTON, DE ;
PARKER, JM ;
WRIGHT, PV .
POLYMER, 1973, 14 (11) :589-589
[8]   Polymers with redox properties: materials for batteries, biosensors and more [J].
Gracia, Raquel ;
Mecerreyes, David .
POLYMER CHEMISTRY, 2013, 4 (07) :2206-2214
[9]   Polymer Electrolytes [J].
Hallinan, Daniel T., Jr. ;
Balsara, Nitash P. .
ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 43, 2013, 43 :503-+
[10]   Aromatic carbonyl derivative polymers as high-performance Li-ion storage materials [J].
Han, Xiaoyan ;
Chang, Caixian ;
Yuan, Liangjie ;
Sun, Taolei ;
Sun, Jutang .
ADVANCED MATERIALS, 2007, 19 (12) :1616-+