Characterization of low-temperature molecular-beam-epitaxy grown GaBiAs layers

被引:32
作者
Pacebutas, V.
Bertulis, K.
Dapkus, L.
Aleksejenko, G.
Krotkus, A.
Yu, K. M.
Walukiewicz, W.
机构
[1] Lithuania Acad Sci, Inst Semicond Phys, LT-01108 Vilnius, Lithuania
[2] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA
关键词
D O I
10.1088/0268-1242/22/7/026
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
GaBiAs layers with Bi content reaching 8.4% are grown by MBE technique at low temperatures. All layers were of p-type with carrier densities ranging from 3 x 10(14) to 2 x 10(15) cm(-3) and resistivities exceeding 60 Omega cm. Energy bandgap of the gallium bismide alloys as determined from spectral measurements of the optical absorption, photoconductivity and photoluminescence decreases linearly with increasing Bi content. Optical pump-terahertz probe measurements made on these layers show that the carrier density dynamics is best described by a double-exponential decay. The shorter of the time constants corresponds to the electron trapping and the longer time constant corresponds to the trap emptying times. It has been found that the electron trapping cross-section is of the same order of magnitude as the corresponding parameter for As-antisite traps in LTG GaAs; therefore, it is reasonable to assume that As antisites play a significant role in carrier recombination processes in GaBiAs, too.
引用
收藏
页码:819 / 823
页数:5
相关论文
共 18 条
[1]   Highly resistive annealed low-temperature-grown InGaAs with sub-500 fs carrier lifetimes [J].
Baker, C ;
Gregory, IS ;
Tribe, WR ;
Bradley, IV ;
Evans, MJ ;
Linfield, EH ;
Missous, M .
APPLIED PHYSICS LETTERS, 2004, 85 (21) :4965-4967
[2]   GaBiAs: A material for optoelectronic terahertz devices [J].
Bertulis, K. ;
Krotkus, A. ;
Aleksejenko, G. ;
Pacebutas, V. ;
Adomavicius, R. ;
Molis, G. ;
Marcinkevicius, S. .
APPLIED PHYSICS LETTERS, 2006, 88 (20)
[3]   Ion-implanted In0.53Ga0.47As for ultrafast optoelectronic applications [J].
Carmody, C ;
Tan, HH ;
Jagadish, C ;
Gaarder, A ;
Marcinkevicius, S .
APPLIED PHYSICS LETTERS, 2003, 82 (22) :3913-3915
[4]   Terahertz radiation from heavy-ion-irradiated In0.53Ga0.47As photoconductive antenna excited at 1.55 μm -: art. no. 193510 [J].
Chimot, N ;
Mangeney, J ;
Joulaud, L ;
Crozat, P ;
Bernas, H ;
Blary, K ;
Lampin, JF .
APPLIED PHYSICS LETTERS, 2005, 87 (19) :1-3
[5]   Electron mobility in dilute GaAs bismide and nitride alloys measured by time-resolved terahertz spectroscopy [J].
Cooke, D. G. ;
Hegmann, F. A. ;
Young, E. C. ;
Tiedje, T. .
APPLIED PHYSICS LETTERS, 2006, 89 (12)
[6]   Giant spin-orbit bowing in GaAs1-xBix [J].
Fluegel, B. ;
Francoeur, S. ;
Mascarenhas, A. ;
Tixier, S. ;
Young, E. C. ;
Tiedje, T. .
PHYSICAL REVIEW LETTERS, 2006, 97 (06)
[7]   Band gap of GaAs1-xBix, 0<x<3.6% [J].
Francoeur, S ;
Seong, MJ ;
Mascarenhas, A ;
Tixier, S ;
Adamcyk, M ;
Tiedje, T .
APPLIED PHYSICS LETTERS, 2003, 82 (22) :3874-3876
[8]  
HASE I, 2006, Patent No. 7009225
[9]   Theoretical study of the effects of isovalent coalloying of Bi and N in GaAs [J].
Janotti, A ;
Wei, SH ;
Zhang, SB .
PHYSICAL REVIEW B, 2002, 65 (11) :1-5
[10]   Non-stoichiometric semiconductor materials for terahertz optoelectronics applications [J].
Krotkus, A ;
Coutaz, JL .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2005, 20 (07) :S142-S150