Optical trapping of otoliths drives vestibular behaviours in larval zebrafish

被引:68
作者
Favre-Bulle, Itia A. [1 ,2 ]
Stilgoe, Alexander B. [1 ]
Rubinsztein-Dunlop, Halina [1 ]
Scott, Ethan K. [2 ,3 ]
机构
[1] Univ Queensland, Sch Math & Phys, St Lucia, Qld 4072, Australia
[2] Univ Queensland, Sch Biomed Sci, St Lucia, Qld 4072, Australia
[3] Univ Queensland, Queensland Brain Inst, St Lucia, Qld 4072, Australia
基金
澳大利亚国家健康与医学研究理事会; 澳大利亚研究理事会;
关键词
MANIPULATION; MOVEMENT; NUCLEUS; CELLS;
D O I
10.1038/s41467-017-00713-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The vestibular system, which detects gravity and motion, is crucial to survival, but the neural circuits processing vestibular information remain incompletely characterised. In part, this is because the movement needed to stimulate the vestibular system hampers traditional neuroscientific methods. Optical trapping uses focussed light to apply forces to targeted objects, typically ranging from nanometres to a few microns across. In principle, optical trapping of the otoliths (ear stones) could produce fictive vestibular stimuli in a stationary animal. Here we use optical trapping in vivo to manipulate 55-micron otoliths in larval zebrafish. Medial and lateral forces on the otoliths result in complementary corrective tail movements, and lateral forces on either otolith are sufficient to cause a rolling correction in both eyes. This confirms that optical trapping is sufficiently powerful and precise to move large objects in vivo, and sets the stage for the functional mapping of the resulting vestibular processing.
引用
收藏
页数:7
相关论文
共 30 条
[1]   How Vestibular Neurons Solve the Tilt/Translation Ambiguity Comparison of Brainstem, Cerebellum, and Thalamus [J].
Angelaki, Dora E. ;
Yakusheva, Tatyana A. .
BASIC AND CLINICAL ASPECTS OF VERTIGO AND DIZZINESS, 2009, 1164 :19-28
[2]   OPTICAL TRAPPING AND MANIPULATION OF VIRUSES AND BACTERIA [J].
ASHKIN, A ;
DZIEDZIC, JM .
SCIENCE, 1987, 235 (4795) :1517-1520
[3]   Quantifying the ontogeny of optokinetic and vestibuloocular behaviors in zebrafish, medaka, and goldfish [J].
Beck, JC ;
Gilland, E ;
Tank, DW ;
Baker, R .
JOURNAL OF NEUROPHYSIOLOGY, 2004, 92 (06) :3546-3561
[4]   The Tangential Nucleus Controls a Gravito-inertial Vestibulo-ocular Reflex [J].
Bianco, Isaac H. ;
Ma, Leung-Hang ;
Schoppik, David ;
Robson, Drew N. ;
Orger, Michael B. ;
Beck, James C. ;
Li, Jennifer M. ;
Schier, Alexander F. ;
Engert, Florian ;
Baker, Robert .
CURRENT BIOLOGY, 2012, 22 (14) :1285-1295
[5]   In vivo optical trapping indicates kinesin's stall force is reduced by dynein during intracellular transport [J].
Blehm, Benjamin H. ;
Schroer, Trina A. ;
Trybus, Kathleen M. ;
Chemla, Yann R. ;
Selvin, Paul R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (09) :3381-3386
[7]  
Budick SA, 2000, J EXP BIOL, V203, P2565
[8]   Chemistry and composition of fish otoliths: pathways, mechanisms and applications [J].
Campana, SE .
MARINE ECOLOGY PROGRESS SERIES, 1999, 188 :263-297
[9]   The vestibular system: multimodal integration and encoding of self-motion for motor control [J].
Cullen, Kathleen E. .
TRENDS IN NEUROSCIENCES, 2012, 35 (03) :185-196
[10]   Control of Movement Initiation Underlies the Development of Balance [J].
Ehrlich, David E. ;
Schoppik, David .
CURRENT BIOLOGY, 2017, 27 (03) :334-344