Covering a graph with cuts of minimum total size

被引:8
作者
Füredi, Z
Kündgen, A
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Hungarian Acad Sci, Inst Math, H-1364 Budapest, Hungary
基金
美国国家科学基金会;
关键词
minimum cover; cut; random graphs; Nordhaus-Gaddum; geometric representation; average distance;
D O I
10.1016/S0012-365X(00)00367-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A cut in a graph G is the set of all edges between some set of vertices S and its complement (S) over tilde = V(G) - S. A cut-cocer of G is a collection of cuts whose union is E(G) and the total size of a cut-cover is the sum of the number of edges of the cuts in the cover. The cut-cover size of a graph G, denoted by cs(G), is the minimum total size of a cut-cover of G. We give general bounds on cs(G), find sharp bounds for classes of graphs such as 4-colorable graphs and random graphs. We also address algorithmic aspects and give sharp bounds for the sum of the cut-cover sizes of a graph and its complement. We close with a list of open problems. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:129 / 148
页数:20
相关论文
共 31 条
[11]  
GABOW HN, 1991, J ACM, V38, P815, DOI 10.1145/115234.115366
[12]  
Garey M. R., 1976, Theoretical Computer Science, V1, P237, DOI 10.1016/0304-3975(76)90059-1
[13]   APPLICATION OF GRAPH COLORING TO PRINTED-CIRCUIT TESTING [J].
GAREY, MR ;
JOHNSON, DS ;
SO, HC .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1976, 23 (10) :591-599
[14]  
Guan M.-G., 1985, ARS COMBINATORIA, V20, P61
[15]   ON A PROBLEM OF KATONA,G.O.H. AND TARJAN,T [J].
GYORI, E ;
KOSTOCHKA, AV .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1979, 34 (3-4) :321-327
[16]  
Hadlock F., 1975, SIAM Journal on Computing, V4, P221, DOI 10.1137/0204019
[17]  
Harary F., 1977, J GRAPH THEOR, V1, P131
[18]   ON SHORTEST COCYCLE COVERS OF GRAPHS [J].
JAEGER, F ;
KHELLADI, A ;
MOLLARD, M .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1985, 39 (02) :153-163
[19]   CYCLE COVERING OF BINARY MATROIDS [J].
JAMSHY, U ;
TARSI, M .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1989, 46 (02) :154-161
[20]  
JUVAN M, 1993, J GRAPH THEOR, V17, P149