On (1,C4) One-Factorization and Two Orthogonal (2,C4) One-Factorizations of Complete Graphs

被引:0
作者
Vazquez-Avila, Adrian [1 ]
机构
[1] Univ Aeronaut Queretaro, Subdirecc Ingn & Posgrad, Queretaro, Mexico
关键词
One-factorization; Orthogonal one-factorization; Strong starters;
D O I
10.1007/s00373-021-02425-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A one -factorization.F of the complete graph IC is (1, Ck), where 1> 0 and k> 4 are integers, if the union F U G, for any F, G E.F, includes exactly 1 (edge -disjoint) cycles of length k (lk < n). Moreover, a pair of orthogonal one-factorizations.F and g of the complete graph IC is (1, Ck) if the union F U G, for any F E.F and G E g, includes exactly 1 cycles of length k. In this paper, we prove the following: if q 11 (mod 24) is an odd prime power, then there is a (1, C4) one -factorization of Kg+1. Also, there is a pair of orthogonal (2, C4) one -factorization of k(q+1).
引用
收藏
页数:11
相关论文
共 10 条
  • [1] Anderson B.A., 1974, GRAPH COMBINATOR, V406, P180
  • [2] Two Orthogonal 4-Cycle-Free One-Factorizations of Complete Graphs
    Bao, Jingjun
    Ji, Lijun
    [J]. GRAPHS AND COMBINATORICS, 2019, 35 (02) : 373 - 392
  • [3] Colbourn C. J., 2007, The CRC Handbook of Combinatorial Designs
  • [4] Hardy GH., 2008, INTRO THEORY NUMBERS
  • [5] Horton J. D., 1981, Aequationes Math, V22, P56
  • [6] Meszka M, 2009, ELECTRON J COMB, V16
  • [7] AN EXISTENCE THEOREM FOR ROOM SQUARES
    MULLIN, RC
    NEMETH, E
    [J]. CANADIAN MATHEMATICAL BULLETIN, 1969, 12 (04): : 493 - &
  • [8] PERFECT 1-FACTORIZATIONS
    Rosa, Alexander
    [J]. MATHEMATICA SLOVACA, 2019, 69 (03) : 479 - 496
  • [9] V?zquez-Avila, 2019, UTILITAS MATHEMATICA, V112, P287
  • [10] Vazquez-Avila A., BOL SOC MAT MEX, V27, P5