Variable-step preconditioned conjugate gradient method for partial symmetric eigenvalue problems

被引:1
作者
Larin, M
Il'in, V
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Numer Math, D-52056 Aachen, Germany
[2] Rhein Westfal TH Aachen, Inst Geometrie & Prakt Math, D-52056 Aachen, Germany
[3] Russian Acad Sci, Siberian Div, Inst Computat Math & Math Geophys, Novosibirsk 630090, Russia
关键词
D O I
10.1163/1569398054308676
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The iterative methods for partial algebraic symmetric eigenvalue problems are considered for sparse positive definite matrices which arise in approximation of 2D and 3D boundary value problems. The approach is based on subspace iterations, Rayleigh-Ritz method, and the variable-step preconditioned conjugate gradient algorithm, including algebraic multigrid and incomplete factorization. Theorems on the properties of convergence rate are presented. The efficiency of the proposed iterative processes is demonstrated by the results of numerical experiments.
引用
收藏
页码:161 / 184
页数:24
相关论文
共 31 条
[1]  
Axelsson O., 1994, ITERATIVE SOLUTION M
[2]  
BAKHVALOV NS, 1995, DOMAIN DECOMPOSITION, P157
[3]   A subspace preconditioning algorithm for eigenvector/eigenvalue computation [J].
Bramble, JH ;
Pasciak, JE ;
Knyazev, AV .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 6 (02) :159-189
[4]   ITERATION METHODS IN EIGENVALUE PROBLEMS [J].
DYAKONOV, EG .
MATHEMATICAL NOTES, 1983, 34 (5-6) :945-953
[5]  
DYAKONOV EG, 1978, T SEM MET VYCH PRIKL, V3, P39
[6]  
DYAKONOV EG, 1996, ITERATION METHOD ELL
[7]  
GAVRILIN AV, 1981, 1 ITERATIVE METHOD S
[8]  
GODUNOV SK, 2000, COMP MATH MATH PHYS, V40, P939
[9]  
Golub G. H., 1996, MATRIX COMPUTATIONS
[10]  
ILIN VP, 1992, ITERATIVE INCOMPLETE