On non quasiconvex problems of the calculus of variations

被引:0
|
作者
Dacorogna, B [1 ]
Pisante, G
Ribeiro, AM
机构
[1] Ecole Polytech Fed Lausanne, Sect Math, CH-1015 Lausanne, Switzerland
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词
existence of minimizers; non quasiconvex function; differential inclusion; singular values;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study existence of minimizers for problems of the type inf{f(Omega) f(Du (x)) dx : u = u(xi o) on partial derivative Omega} where f is non quasiconvex and u(xi o) is an affine function. Applying some new results on differential inclusions, we get sufficient conditions. We also study necessary conditions. We then consider some examples.
引用
收藏
页码:961 / 983
页数:23
相关论文
共 3 条
  • [1] COMPACTNESS VERSUS REGULARITY IN THE CALCULUS OF VARIATIONS
    Faraco, Daniel
    Kristensen, Jan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2012, 17 (02): : 473 - 485
  • [2] A non-penalty recurrent neural network for solving a class of constrained optimization problems
    Hosseini, Alireza
    NEURAL NETWORKS, 2016, 73 : 10 - 25
  • [3] Stability Rates for Linear Ill-Posed Problems with Compact and Non-Compact Operators
    Hofmann, B.
    Fleischer, G.
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 1999, 18 (02): : 267 - 286