Log-Modulated Rough Stochastic Volatility Models

被引:7
作者
Bayer, Christian [1 ]
Harang, Fabian A. [2 ]
Pigato, Paolo [3 ]
机构
[1] Weierstrass Inst Appl Anal & Stochast, D-10117 Berlin, Germany
[2] Univ Oslo, Dept Math, N-0316 Oslo, Norway
[3] Univ Roma Tor Vergata, Dept Econ & Finance, I-00133 Rome, Italy
来源
SIAM JOURNAL ON FINANCIAL MATHEMATICS | 2021年 / 12卷 / 03期
关键词
rough volatility models; stochastic volatility; rough Bergomi model; implied skew; fractional Brownian motion; log Brownian motion; THE-MONEY SKEW;
D O I
10.1137/20M135902X
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We propose a new class of rough stochastic volatility models obtained by modulating the power-law kernel defining the fractional Brownian motion (fBm) by a logarithmic term, such that the kernel retains square integrability even in the limit case of vanishing Hurst index H. The so-obtained logmodulated fractional Brownian motion (log-fBm) is a continuous Gaussian process even for H = 0. As a consequence, the resulting super-rough stochastic volatility models can be analyzed over the whole range 0 <= H < 1/2 without the need of further normalization. We obtain skew asymptotics of the form log(1/T)(-pT H 1/2) as T -> 0, H >= 0, so no flattening of the skew occurs as H -> 0.
引用
收藏
页码:1257 / 1284
页数:28
相关论文
共 30 条
[1]   On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility [J].
Alos, Elisa ;
Leon, Jorge A. ;
Vives, Josep .
FINANCE AND STOCHASTICS, 2007, 11 (04) :571-589
[2]  
[Anonymous], 2002, LIMIT THEOREMS STOCH
[3]   Short-time near-the-money skew in rough fractional volatility models [J].
Bayer, C. ;
Friz, P. K. ;
Gulisashvili, A. ;
Horvath, B. ;
Stemper, B. .
QUANTITATIVE FINANCE, 2019, 19 (05) :779-798
[4]   A regularity structure for rough volatility [J].
Bayer, Christian ;
Friz, Peter K. ;
Gassiat, Paul ;
Martin, Jorg ;
Stemper, Benjamin .
MATHEMATICAL FINANCE, 2020, 30 (03) :782-832
[5]   Pricing under rough volatility [J].
Bayer, Christian ;
Friz, Peter ;
Gatheral, Jim .
QUANTITATIVE FINANCE, 2016, 16 (06) :887-904
[6]   Decoupling the Short- and Long-Term Behavior of Stochastic Volatility [J].
Bennedsen, Mikkel ;
Lunde, Asger ;
Pakkanen, Mikko S. .
JOURNAL OF FINANCIAL ECONOMETRICS, 2022, 20 (05) :961-1006
[7]   Short-Term At-the-Money Asymptotics under Stochastic Volatility Models [J].
El Euch, Omar ;
Fukasawa, Masaaki ;
Gatheral, Jim ;
Rosenbaum, Mathieu .
SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2019, 10 (02) :491-511
[8]   The characteristic function of rough Heston models [J].
El Euch, Omar ;
Rosenbaum, Mathieu .
MATHEMATICAL FINANCE, 2019, 29 (01) :3-38
[9]  
Forde M., IN PRESS
[10]   Small-time, large-time, andH→0asymptotics for the Rough Heston model [J].
Forde, Martin ;
Gerhold, Stefan ;
Smith, Benjamin .
MATHEMATICAL FINANCE, 2021, 31 (01) :203-241